Recent Progress
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Including collaborations with Maki Yoshida (NICT) & Harumichi Nishimura (Nagoya Univ.)



Multi-Party Computation (MPC)
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- Goal

Jointly compute f(xq, x5, X3,X4)
with revealing nothing but f(xq, X, X3, X4)




Multi-Party Computation (MPC) [Yao (1986)]

From party P;’s secret x;, MPC can compute y = f (x4, ..., X)

w/o revealing any information except for y!
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Necessary & sufficient communication resources (complexity),
particularly, effects of privacy requirement?

Hard to analyze in complex models...
=» simpler communication patterns! 3



Private Simultaneous Messages (PSM)
[Feige, Killian & Naor (1994)], [Ishai & Kushilevitz (1997)]

Privacy

Learns nothing except

for the output...

\
shared randomness
(r-bits)
S e e :> fCer, 22, %3)
K’T-,- Y [ Correctness }

communication complexity (CC)

— |i = optimal #bits of (my, m,, m3)



Information-Theoretically Perfect Privacy

/[ Definition 1

k-party PSM protocol II for f: X; X --- X X}, = {0,1} has perfect privacy

“ HDOHDl; vxl; L vxk: M(xll ---)xk) = Df(xl,...,xk)

D,, D1 = distributions over message space
\ M (xq, ..., x;) = joint distribution of I1’'s message on inputs x4, ..., Xy

~

J

Message distribution can be determined only by output f (x4, ..., X ) w/o private inputs x4, ...

= R learns nothing except for f(xq, ..., xx).

Statistical version: A(M(xl, ey X1), Df(xl,---,xk)) <¢
Computational version: No poly-time adversary distinguish M (x4, ..., x3) & Deixy,ni)

,Xk



Positive Results

Theorem [Feige, Kilian & Naor (1994)]
vf:{0,1}" x {0,1}" — {0,1}, 32-party PSM protocol of CC < 2™ + n + 1.

Improved to 0(2™?%) by Beimel, Ishai, Kumaresan, & Kushilevitz (2014), but still exponential!
k-party PSM of CC < 0 (k32™%/2) by Beimel, Kushilevitz & Nissim (2018)

Theorem [Ishai & Kushilevitz (1997)]

VI :({0,1}M* - {0,1} € mod,,L, 3k-party PSM protocol of CC < poly(k,n)



Negative Results

[ Theorem [Beimel, Ishai, Kumaresan & Kushilevitz (2014)] }

V2-party PSM protocol for f:{0,1}" x {0,1}" — {0,1} with universal reconstruction
requires CC > 2™,
universal reconstruction = referee does not depend on f
FKN protocol (1994) of CC < 2™ + n + 1 has universal reconstruction, and thus, it has (almost) optimal CC.
BIKK protocol (2014) of CC < 0(2"/2) broke this barrier by non-universal reconstruction.

Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)] J

V2-party PSM protocol has CC > (3 — 0(1))11 for random f:{0,1}" x {0,1}" — {0,1}.

Trivial protocol w/o privacy has CC < 2n.
Additional cost is inevitable for privacy! .




Randomness Complexity

Very important resourceI

Randomness Complexity (RC) \|i

= optimal #r-bits

. N Coxy,
shared randomness Q, N

(r-bits)

I:> f(xlr X2, x3)

L]
.




Positive Results

Explicit constructions of PSM protocols provide upper bounds of RC.
For example,

Theorem [Feige, Kilian & Naor (1994)]

vf:{0,1}" x {0,1}" — {0,1}, 32-party PSM protocol of RC < 2™ + n.



Negative Results

However, little work has been done for lower bounds of RC so far!

Theorem [Pillai, Prabhakaran, Prabhakaran & Sridhar (2019)] J

V2-party PSM protocol for 2-bit input AND: {0,1} X {0,1} = {0,1} has RC > log 6. J

This shows randomness optimality of k-party PSM protocols for k-bit AND
[Feige, Killian, & Naor (1994)] when k = 2.
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Randomness Bounds for PSM Protocols

Recent results for tight characterization of randomness complexity by communication complexity

/{ Theorem [K & Yoshida (2021)] ]

~
A := CC of PSM protocols for f, p := RC of PSM protocols for f
A—-1<p<2A
. _J
({ Collorary [K & Yoshida (2021)] ] ~
V2-party PSM protocol for f:{0,1}" x {0,1}" — {0,1} with universal reconstruction
has RC> 2" — 1.
N\ _/

A. Kawachi & M. Yoshida: “Randomness Bounds for Private Simultaneous Messages and Conditional Disclosure of Secrets,”
IACR Cryptol. ePrint Arch. 2021: 1037 (2021)



Proof Idea: Randomness Lower Bounds p = 4 — 1

“Ciphertext”

“Secret Key”

\

shared randomness

G

Analogous to LB for secret-key length
in one-time pad (Shannon’s Theorem)




Proof Idea: Randomness Lower Bounds p = 1 — 1

Encryption

Q\l".l' ‘\'

shared randomness

T

cj i

Learns nothing...

]
Learns nothing
except for the output...

4

:> f(xq,x2,%3)

Correctness

Theorem (Shannon)

Encryption has perfect secrecy
=> |secret key| = |ciphertext|

communication
complexity

| secret key| is lower-bounded by A in PSM!
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Proof Idea: Randomness Upper Bounds p < A4

Randomness sparsification [Newman (1991)]

Common technique for saving randomness in communication protocols

| | used for
protocol execution!

random function G ﬁ random function G

{ shared randomness } ’
B
— b
eyt o

The converted protocol works well w.h.p. (w.r.t. G) with additional error!
(e.g., randomness sparsification for stat-private CDS [Applebaum & Vasudevan (2021)])

Problem: NOT applicable in our perfect-privacy setting!
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Proof Idea: Randomness Upper Bounds p < 4

Our new strategy: algorithmically convert the protocol as preserving the perfect privacy

I:> Find collisions in randomness space & delete one in preimage!

Randomness space

O\ Message space
VAR

15



For private inputs x4, X, ..., X for which f(xq, x5, ..., x;) = 0

randomness space
R 0-message space

T message function M,

O (P1(x1; ), ., Pe(xi5 ) (decodes to 0)

(Pl(xl; rl)r L Pk(xk; 1"1))

o e e e e e




For another input (x4, x5, ..., x3) for which f(x1,x3, ..., x3) =0

randomness space

0-message space
M
(decodes to 0)

—

R
r‘*
r
messag
(P1 (x1;+),

e function
s P +))

B

N\

(PGt 1), e, P 1))

e — —_
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randomness space

R 0-message space
T message function M,
O (P1(x1; ), ., Pe(xi5 ) (decodes to 0)
2
O
/“
7 e
O message function

(P1(xii Dofeers P (s - ))

Deleted elements are inconsistent in (xq, X5, ..., X ) & (X1, X3, ..., X1,).

Permute R for P, (x{; ), ..., P, (x.; - ) to coincide r, with 15!
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randomness space

R 0-message space
T message function M,

Py (x5 ), ., Pr(xi;-))  (decodes to 0)

O 0

!/
o(ry) message function

(Pl(xi; O-( ! )); ey Pk(x],(; O-( ’ )))

Deleted elements are inconsistent in (xq, X5, ..., X ) & (X1, X3, ..., X1,).

Permute R for P, (x{; ), ..., P, (x.; - ) to coincide r, with 15!

E:> By repeating deletions, get |R| < | M| (or p < |R| < max{| M|, |[M;|} < A)
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Additional Remark

Our bounds are exactly tight for size of message/randomness space.

Theorem 1

)

A

M, := b-message space of PSM protocols of optimal CC for f (b € {0,1}),
R :=randomness space of PSM protocols for f

|R| = max{| M|, | M|}

~

20



Related Models with PSM

B Decomposable Randomized Encoding (DRE) [Applebaum, Ishai & Kushilevitz (2004)]
» DRE = PSM in which every party has 1-bit inputs.
* DRE implies PSM.
» DRE has extremely efficient encoding procedure (=parties).
B Ad-hoc PSM [Beimel, Gabizon, Ishai & Kushilevitz (2016)]
» PSM in which a part of parties participate at actual execution.

B Non-interactive MPC (NIMPC)
[Beimel, Gabizon, Ishai, Kushilevitz, Meldgaard & Paskin-Cherniavsky (2014)]

» Referee & some of parties may be corrupted by adversary.

» PSM=2>NIMPC [Benhamouda, Krawczyk & Rabin (2017)], [Eriguchi, Ohara, Nuida & Yamada (2021)]
B Quantum versions of PSM

» for quantum circuits (Q-DRE, Q-garbled circuits) [Brakerski & Yuen (2020)]

» for Boolean functions (PSQM) [K & Nishimura (2021)]

21



Private Simultaneous Quantum Messages (PSQM)

Perfect Privacy

Learns nothing except
for the output...

O

\
shared randomness
(r-bits)
:'. ’ oj :'. ’ oi ;:.. :1 Wp 1
Y Y

Perfect
Correctness

A. Kawachi & H. Nishimura: “Communication Complexity of Private Simultaneous Quantum Messages Proggcols,”
IACR Cryptol. ePrint Arch. 2021: 636 (2021)



Private Simultaneous Quantum Messages (PSQM)

Perfect Privacy

Learns nothing except

/shared entanglemer%
(e-bits)

for the output...

ORCRC:

I:> f(xli X2, X3)

w.p. 1

Perfect
Correctness

A. Kawachi & H. Nishimura: “Communication Complexity of Private Simultaneous Quantum Messages Proggcols,”

IACR Cryptol. ePrint Arch. 2021: 636 (2021)



Quantum Version of Privacy

Definition 1

J

k-party PSQM protocol II for f: X; X -+ X X}, = {0,1} has perfect privacy

“ ApoAp1, VX1, oo, VX M(Xq, .., Xp) = Pr(xq,..xx)

Po, P1 = density operators over message space
\ M (x4, ..., x;) = joint quantum state of I[I’s message on inputs x, ..., X},

/

Message state can be determined only by output f (x4, ..., x5 ) w/o private inputs x, ..., X
= R learns nothing except for f(xq, ..., xx).
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Communication Complexity in SMP
Randomness VS Entanglement Simultaneous Message Passing]

= PSM w/o privacy

 Some designated relation in 2-party S(Q)MP

— Quantum (w/ r-bits): 2((n/log rﬁ) |
_ Classical (w/ e-bits): 0 (logn) [Gavinsky, Kempe, Regev & de Wolf (2009)]

Exponential Gap

 Equality function (EQ, (x1,x,) = [x; = x,]) in 2-party S(Q)MP

— Classical (w/ r-bits): 2n : Horn et al. (2005)]

— Quantum (w/ e-bits) n - - _
Q . ( / ) ést known gap for total functions! ;
Question1 | [ Factor-2 Gap q° = ——

What about gaps of r-/e-bits in PSQM protocols?

25



Gaps in Communication Complexity
between Shared Randomness & Entanglement

Question 1

What about gaps of r-/e-bits in PSQM protocols?

Theorem [K & Nishimura, 2021]

Jtotal function f: ({0,1}")* — {0,1} s.t.

some PSQM protocol w/ e-bits for f has kn/2-bit messages
& any PSQM protocol w/ r-bits for f requires = kn-bit messages.

-bits reduce message length by half for a total function
even under privacy-preserving setting!



Gaps in Communication Complexity
between Shared Randomness & Entanglement

Question 1

What about gaps of r-/e-bits in PSQM protocols?

Theorem [K & Nishimura, 2021]

Jpartial function f: ({0,1}")? - {0,1} s.t.

some PSM protocol w/ e-bits for f has O(log n)-bit messages
& any PSQM protocol w/ r-bits for f requires Q(n)-bit messages.

-bits reduce message length exponentially for a partial function
even under privacy-preserving setting!



Communication Lower Bounds in PSM

Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)] J

V2-party PSM protocol has CC > (3 — 0(1))n for random f:{0,1}" x {0,1}" — {0,1}. J

Trivial protocol w/o privacy has CC < 2n.
Additional cost is inevitable for privacy!

Question 2

What about lower bounds of PSQM protocols?
Can break (3 — o(1))n lower bound by quantum communication?

28



Communication Lower Bounds in PSQM

Question 2

What about lower bounds of PSQM protocols?
Can break (3 — 0(1))n lower bound by quantum communication?

/_[Theorem [K & Nishimura (2021)]}

For 1 — o(1) fraction of functions f:{0,1}"* x {0,1}" — {0,1},
VPSQM protocol w/ r-bits for f has CC > (3 — 0(1))n.

Privacy requires non-trivial communication cost
even for Q-messages!



Gaps in Communication Complexity
between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

Jtotal function f: ({0,1}")* — {0,1} s.t.

some PSQM protocol w/ e-bits for f has kn/2-bit messages
& any PSQM protocol w/ r-bits for f requires = kn-bit messages.



Proof Strategy

Consider Equality function EQ,,(x,y) = I|x = y] (x,y € {0,1}") fork = 2

[ J

EQ,, has 2-party SQMP protocol w/ e-bits of message length = n.

This protocol does NOT satisfy privacy/Pl: %11 (%, X1 N
‘ P;: /‘%1 ng )g,n
Randomization of Q-messages encodeqd P,: af‘,i,l xi?z . f‘,i,n
" For k-party version, use the following generalization: .0 oI oI J
GEQ, (X1, X, .., Xg) = {é X110 D DPxp1 =X, P Pxk2==%, B Dxgn=0
% 0. W. )
kn-bit lower bound (w/ r-bits) can be obtained by the argument of [Klauck (2007)] A
for one-way quantum communication. )




Protocol

Consider GEQ,(x,y) = {1 1@y =50y, =0(=x=y)

0 0. W.
, ™
> g

g g ) l: < \

TaTp Sty =71

nonzero ' = 11! D) = —<|0>A|O>B+|1>A|1>B> k

. Y e
F U1

Or\

) 3




Protocol

Consider GEQ, (x,y) = {1 1@y =50y, =0(=x=y)

0 0. W.
a = a1a2

[ a is randomization of x by r’.

p(a) = p(r')p(x)
|

For x{,x, € IF,,
p(x1x5) = x4 + x,a mod q(a),
where q(a) is deg-2 irreducible poly.

< b=bb, >

[ b is randomization of y by r'.

p(b) =p(")p(y)

33



Protocol

Consider GEQ, (x,y) = {(1) X1 Dy =x; 62));?/ =0(ex=y)

.@ f'\. :
> i

! i

Apply Z ifa, =1

! s = a8
Ty Stry =1p L
nonzeror’ = r{r; |®) = \/—(|0>A 0)p + [1)4l1)p)
\_ J W
Apply Z if b, = 1
b = byb,
oo . I:

" \~J



Protocol

Consider GEQ, (x,y) = {(1) X1 Dy =x; G?)Ji; =0(ex=y)

Apply Xifa, B ry =1
r r ™

v

TyTg Sty =1, 1
T [©1) = 7 (100a10)5 + (=D%**2]1)4]1)5)

nonzeror' = r{r, ,

\_ J\L 4
Apply Xifby @ rg =1
b=bb, -
Oo, 'I"."
N
( }




Protocol

Consider GEQ, (x,y) = {1 2Oy =x 0,

.@ f'\. :
> i

0

#5509
[

-

\_

~N

f'
TaT StTa = Tp CI)21> |a; @ 14) |1 @ 75)
nonzeror' =1r| = ( 1R ATQ 1P B )
V2\+(—1)%*P2|a; @ 1y @ 1)4lb, @ rp D 1)
\
b — blbz

Oo,

i)

=0(ex=y)

0. W,

.\,/

| @)
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.! E{H looo L4 ] I
> -
i v N

Protoco

Consider GEQ, (x,y) = {1 1@y =50y, =0(=x=y)

0

%
[

0
Measure in Bell basis:

{choo) =100) + [11), |®40) = [10) +|01)
|©01) = 100) — [11),|®4;) = [10) — |01)
Output 1 iff @y, is measured.

-

AT s.t g = Tp
nonzeror’ =,

\_

\

;)
al

|a1 @TA>A|I91 @TB>B )
+(—1)%2*02]a; @1y @ 1)4lb; D1 B 1)p

3,\. J/

~N

Correctness:
1 x=ySa=>»
2. ®ygis measured © a by = 1415 Aay, = by
3. Ty =Tg
Privacy:
randomization by affine transform with r & r’

j



Gaps in Communication Complexity
between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

Jpartial function f: ({0,1}")? - {0,1} s.t.

some PSM protocol w/ e-bits for f has O(log n)-bit messages
& any PSQM protocol w/ r-bits for f requires Q(n)-bit messages.



distributed Proof Strategy

Deutsch-Jozsa problem
(partial function)

| 1 xX=Y

[ J

(x,y € {0,1}").

DJ,, has 2-party SMP protocol w/ e-bits of message length = O (logn).

This protocol does NOT satisfy privacy condition...

¥

Randomize Q-messages by random affine transform over [F}

by generalizing the argument of [de Wolf (2001)] for partial functions.

{ Q(n)-bit lower bound (w/ r-bits) can be obtained
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O 0 ) L4 [ ] .
> s
s s 0N

Consider D], (x,y) = {

‘«

)

Protocol

1

X =Y

0 AGoy)=nj2 Y EQLY.

4 r
D) = —
nonzero r _
r \/ﬁie{o,l}m
(n=2m

[ ali}s

\_ J L
v
Sy 52 (N
S 7

Fu
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Protocol

1 —
Consider D], (x,y) = {O A(x,);/) =yn/2 (x,y € {0,1}").

,“::'
> A::A \

Shift phase w/ x

4 4 : V )

nonzero 7 9)=—= ) ldali)e

n.
r' ie{0,1}m
(n =2m) i i

Shift phase w/ y
‘-m (y_—

‘ 41




Consider D], (x,y) = {

,“::'
> A::A \

Protocol

1

X =Y

0 A(x,y)=n/2

Apply H
| [
4 4
)= > ( 1)’¥( 1)
nonzeror = — L)1)
'r" ' \/ﬁiE{O,l}m
(n=2™)

’

~

Apply H

(x,y €{0,1}").
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Protocol

1 —
Consider D],,(x,y) = {0 A(x,);) :yn/z (x,y € {0,1}™).

°|oo|
> 5

| A

Measure
' basis

—7 in comp. “

|@,) v o
N 1 , :
d === > [ Y DR (DY ) (DI !

m/n ie{0,1}m ke{0,1}m i’E{(K
\A |- B

g u

Measure
m in comp. basis
AP Al
‘ b 43




Protocol

1 —
Consider D],,(x,y) = {O ACx 3;) :yn/z (x,y € {0,1}™).

> i
P TS SN

Output 1 iff my = mp

T oo
4 4 S
my = p(r)p(K) +p(r’)
et ®5) = [K)4lL) Q
' mp = p(p(L) +p(r") |
. Yy, \_ Y, Correctness:
Ifx =y,K =Land Prjmy, = mg| =1
o / O.W. Pr[mA — mB] =0
0: /

| Privacy:
% j randomization by affine transform with r & r’



Communication Lower Bounds in PSQM

ATheorem [K & Nishimura (2021)]}

For 1 — o(1) fraction of functions f:{0,1}"* x {0,1}" — {0,1},
VPSQM protocol w/ r-bits for f has CC > (3 — 0(1))n.
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Proof Strategy (Classical lower bounds)

Run PSM twice independently!

15t message 2" message
meM meM

Event P = [m = m'] = 15t & 2" messages collide.

Collision prob. = 1/| message domain| ]

46



Proof Strategy (Classical lower bounds)

Run PSM twice independently!

15t message 2" message
meM meM

Gl (e GO

Event P) = [m = m'] = 15t & 2" messages collide.

( message 1
length

_ _— 1
Pr[P(—)] > 1/|M|, i.e., log|M| = log (Pr[P(=)]) ]

UB of Pr[P(z)] =>» LB of message length!




Proof Strategy (Quantum lower bounds)

Run PSQM twice independently!

15t message 2" message
Pm € Hy Pm' € Hy

Event P5) = [p,,, = p,/] = 15t & 2" messages collide.

[ Pr[P(=)] > 1/ dim H,; does NOT hold! ]

Infinite states can live in finite-dimensional H,...
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Proof Strategy (Quantum lower bounds)

“collision measure” for Q-messages ??

The purity tr(p2,) of Q-message p,, = “how pure p,,, is”

= “how much two p,, collide”
Q-message

length
tr(p2,) = 1/dim #,, i.e., log(dim H,,) = log(tr(p3,)™1) W

UB of tr(p2,)=> LB of Q-message length!

Classical LB | Collision probability: Prfm = m’] ‘ Combinatorial analysis of probability

, Combinatorial analysis of trace
Quantum LB Purity: tr(p3,) ‘ Y

w/ quantum barriers



Open Problems

* Exponential gap of CCin PSM w/ IT privacy

— UB: 2™2 for all functions [Beimel et al. (2014)]
— LB: (3 — 0(1))n for almost all functions [Applebaum et al. (2020)]

» cf. DRE has Q(nz/log n) LB for Element Distinctness [Ball, Holmgren, Ishai, Liu & Malkin (2020)]
* Computational power of PSM w/ IT privacy

— mod,,-L functions have poly CC w/ IT privacy [Ishai & Kushilevitz (1997)]
P functions have poly CC w/ comp. privacy [Feige, Kushilevitz & Naor (1994)]
* Limitations of entanglement in PSQM
— (3 —0(1))n LB in PSQM protocols w/ r-bits [K & Nishimura (2021)]
— Can break this LB w/ e-bits, or not?
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