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Multi-Party Computation (MPC)
𝑥𝑥1 𝑥𝑥2

𝑥𝑥3 𝑥𝑥4

Jointly compute 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4
with revealing nothing but 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

Goal

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4
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Enables collaborations across many 
companies using private information!

Necessary & sufficient communication resources (complexity),
particularly, effects of privacy requirement?

Hard to analyze in complex models… 
 simpler communication patterns! 3

Multi-Party Computation (MPC) [Yao (1986)]

From party 𝑃𝑃𝑖𝑖’s secret 𝑥𝑥𝑖𝑖, MPC can compute 𝑦𝑦 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
w/o revealing any information except for 𝑦𝑦!



Private Simultaneous Messages (PSM)
[Feige, Killian & Naor (1994)], [Ishai & Kushilevitz (1997)]

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3
1-way!

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3

𝑚𝑚1

𝑚𝑚2

𝑚𝑚3

shared randomness
(r-bits)

Learns nothing except 
for the output…

Privacy

4

Correctness

communication complexity (CC) 
= optimal #bits of 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3



Information-Theoretically Perfect Privacy
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𝑘𝑘-party PSM protocol Π for 𝑓𝑓:𝑋𝑋1 × ⋯× 𝑋𝑋𝑘𝑘 → {0,1} has perfect privacy

Definition

∃𝐷𝐷0∃𝐷𝐷1,∀𝑥𝑥1, … ,∀𝑥𝑥𝑘𝑘:𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ≡ 𝐷𝐷𝑓𝑓 𝑥𝑥1,…,𝑥𝑥𝑘𝑘

𝐷𝐷0,𝐷𝐷1 = distributions over message space
𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 = joint distribution of Π’s message on inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘

Message distribution can be determined only by output 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 w/o private inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
= 𝑅𝑅 learns nothing except for 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 .

Statistical version: Δ 𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ,𝐷𝐷𝑓𝑓 𝑥𝑥1,…,𝑥𝑥𝑘𝑘 ≤ 𝜀𝜀
Computational version: No poly-time adversary distinguish 𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 & 𝐷𝐷𝑓𝑓 𝑥𝑥1,…,𝑥𝑥𝑘𝑘



Positive Results
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Theorem [Feige, Kilian & Naor (1994)]

Theorem [Ishai & Kushilevitz (1997)]

∀𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 , ∃2-party PSM protocol of CC ≤ 𝟐𝟐𝒏𝒏 + 𝒏𝒏 + 𝟏𝟏.

Improved to 𝑶𝑶(𝟐𝟐𝒏𝒏/𝟐𝟐) by Beimel, Ishai, Kumaresan, & Kushilevitz (2014), but still exponential!

𝑘𝑘-party PSM of CC ≤ 𝑶𝑶(𝒌𝒌𝟑𝟑𝟐𝟐𝒏𝒏𝒏𝒏/𝟐𝟐) by Beimel, Kushilevitz & Nissim (2018)

∀𝑓𝑓: 0,1 𝑛𝑛 𝑘𝑘 → 0,1 ∈ mod𝑝𝑝L, ∃𝑘𝑘-party PSM protocol of CC ≤ 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩(𝒌𝒌,𝒏𝒏)



Negative Results
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Theorem [Beimel, Ishai, Kumaresan & Kushilevitz (2014)]

∀2-party PSM protocol for 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 with universal reconstruction
requires  CC ≥ 𝟐𝟐𝒏𝒏.

universal reconstruction = referee does not depend on 𝑓𝑓

FKN protocol (1994) of CC ≤ 2𝑛𝑛 + 𝑛𝑛 + 1 has universal reconstruction, and thus, it has (almost) optimal CC.

BIKK protocol (2014) of CC ≤ 𝑂𝑂 2𝑛𝑛/2 broke this barrier by non-universal reconstruction.

Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)]

∀2-party PSM protocol has CC ≥ 𝟑𝟑 − 𝐨𝐨 𝟏𝟏 𝒏𝒏 for random 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 . 

Trivial protocol w/o privacy has CC ≤ 2𝑛𝑛.
Additional cost is inevitable for privacy!



Randomness Complexity
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𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3

𝑚𝑚1

𝑚𝑚2

𝑚𝑚3

shared randomness
(r-bits)

Very important resource!
Randomness Complexity (RC)

= optimal #r-bits



Positive Results
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Explicit constructions of PSM protocols provide upper bounds of RC. 
For example,

Theorem [Feige, Kilian & Naor (1994)]

∀𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 , ∃2-party PSM protocol of RC ≤ 𝟐𝟐𝒏𝒏 + 𝒏𝒏.



Negative Results
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However, little work has been done for lower bounds of RC so far!

Theorem [Pillai, Prabhakaran, Prabhakaran & Sridhar (2019)]

∀2-party PSM protocol for 2-bit input AND: 0,1 × 0,1 → 0,1 has RC ≥ 𝐥𝐥𝐥𝐥𝐥𝐥 𝟔𝟔.

This shows randomness optimality of 𝑘𝑘-party PSM protocols for 𝑘𝑘-bit AND 
[Feige, Killian, & Naor (1994)] when 𝑘𝑘 = 2.



Randomness Bounds for PSM Protocols
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Recent results for tight characterization of randomness complexity by communication complexity

Theorem [K & Yoshida (2021)]

𝜆𝜆 := CC of PSM protocols for 𝑓𝑓, 𝜌𝜌 := RC of PSM protocols for 𝑓𝑓

𝝀𝝀 − 𝟏𝟏 ≤ 𝝆𝝆 ≤ 𝝀𝝀

Collorary [K & Yoshida (2021)]

∀2-party PSM protocol for 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 with universal reconstruction
has  RC ≥ 𝟐𝟐𝒏𝒏 − 𝟏𝟏.

A. Kawachi & M. Yoshida: “Randomness Bounds for Private Simultaneous Messages and Conditional Disclosure of Secrets,”
IACR Cryptol. ePrint Arch. 2021: 1037 (2021) 



Proof Idea: Randomness Lower Bounds 𝜌𝜌 ≥ 𝜆𝜆 − 1

1212

“Secret Key”

“Ciphertext”

“Adversary”

Analogous to LB for secret-key length
in one-time pad (Shannon’s Theorem)



Proof Idea: Randomness Lower Bounds 𝜌𝜌 ≥ 𝜆𝜆 − 1

1313

PSMEncryption

Encryption has perfect secrecy 
 secret key ≥ |ciphertext|

Theorem (Shannon)

|secret key| is lower-bounded by 𝜆𝜆 in PSM!

communication 
complexity



Proof Idea: Randomness Upper Bounds 𝜌𝜌 ≤ 𝜆𝜆
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Randomness sparsification [Newman (1991)]
Common technique for saving randomness in communication protocols

shared randomness

random function G random function G

used for 
protocol execution!

The converted protocol works well w.h.p. (w.r.t. G) with additional error!
(e.g., randomness sparsification for stat-private CDS [Applebaum & Vasudevan (2021)])

Problem: NOT applicable in our perfect-privacy setting!



Proof Idea: Randomness Upper Bounds 𝜌𝜌 ≤ 𝜆𝜆
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Our new strategy: algorithmically convert the protocol as preserving the perfect privacy

Find collisions in randomness space & delete one in preimage!

Randomness space

Message space
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For private inputs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 for which 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 = 0

0-message space
ℳ0

(decodes to 0)

randomness space
ℛ

𝑟𝑟1

𝑟𝑟2

message function
𝑃𝑃1 𝑥𝑥1; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘; ⋅

𝑃𝑃1 𝑥𝑥1; 𝑟𝑟1 , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘; 𝑟𝑟1
= 𝑃𝑃1 𝑥𝑥1; 𝑟𝑟2 , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘; 𝑟𝑟2
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For another input 𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑘𝑘′ for which 𝑓𝑓 𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑘𝑘′ = 0

0-message space
ℳ0

(decodes to 0)

randomness space
ℛ

𝑟𝑟1′

𝑟𝑟2′
message function

𝑃𝑃1 𝑥𝑥1′ ; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; ⋅ 𝑃𝑃1 𝑥𝑥1′ ; 𝑟𝑟1′ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; 𝑟𝑟1′

= 𝑃𝑃1 𝑥𝑥1′ ; 𝑟𝑟2′ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; 𝑟𝑟2′
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0-message space
ℳ0

(decodes to 0)

randomness space
ℛ

𝑟𝑟1′

message function
𝑃𝑃1 𝑥𝑥1′ ; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; ⋅

𝑟𝑟1 message function
𝑃𝑃1 𝑥𝑥1; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘; ⋅

Deleted elements are inconsistent in 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 & 𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑘𝑘′ .

Permute ℛ for 𝑃𝑃1 𝑥𝑥1′ ; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; ⋅ to coincide 𝑟𝑟2′ with 𝑟𝑟2!
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Deleted elements are inconsistent in 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 & 𝑥𝑥1′ , 𝑥𝑥2′ , … , 𝑥𝑥𝑘𝑘′ .

Permute ℛ for 𝑃𝑃1 𝑥𝑥1′ ; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ; ⋅ to coincide 𝑟𝑟2′ with 𝑟𝑟2!

By repeating deletions, get ℛ ≤ ℳ0 (or  𝜌𝜌 ≤ ℛ ≤ max ℳ0 , ℳ1 ≤ 𝜆𝜆)

0-message space
ℳ0

(decodes to 0)

randomness space
ℛ

𝜎𝜎 𝑟𝑟1′ message function
𝑃𝑃1 𝑥𝑥1′ ;𝜎𝜎( ⋅ ) , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘′ ;𝜎𝜎( ⋅ )

𝑟𝑟1 message function
𝑃𝑃1 𝑥𝑥1; ⋅ , … ,𝑃𝑃𝑘𝑘 𝑥𝑥𝑘𝑘; ⋅



Additional Remark
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Our bounds are exactly tight for size of message/randomness space.

Theorem

ℳ𝑏𝑏:= 𝑏𝑏-message space of PSM protocols of optimal CC for 𝑓𝑓 𝑏𝑏 ∈ 0,1 , 
ℛ := randomness space of PSM protocols for 𝑓𝑓

ℛ = 𝐦𝐦𝐦𝐦𝐦𝐦 ℳ0 , |ℳ1|



Related Models with PSM
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 Decomposable Randomized Encoding (DRE) [Applebaum, Ishai & Kushilevitz (2004)]

 DRE ≈ PSM in which every party has 1-bit inputs.
• DRE implies PSM.

 DRE has extremely efficient encoding procedure (=parties).
 Ad-hoc PSM [Beimel, Gabizon, Ishai & Kushilevitz (2016)]

 PSM in which a part of parties participate at actual execution.
 Non-interactive MPC (NIMPC)

[Beimel, Gabizon, Ishai, Kushilevitz, Meldgaard & Paskin-Cherniavsky (2014)]
 Referee & some of parties may be corrupted by adversary.
 PSMNIMPC [Benhamouda, Krawczyk & Rabin (2017)], [Eriguchi, Ohara, Nuida & Yamada (2021)]

 Quantum versions of PSM
 for quantum circuits (Q-DRE, Q-garbled circuits) [Brakerski & Yuen (2020)]

 for Boolean functions (PSQM) [K & Nishimura (2021)]



Private Simultaneous Quantum Messages (PSQM)

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3
1-way!

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3

𝑚𝑚1

𝑚𝑚2

𝑚𝑚3

shared randomness
(r-bits)

Learns nothing except 
for the output…

22

Perfect Privacy

w.p. 1

Perfect
Correctness

A. Kawachi & H. Nishimura: “Communication Complexity of Private Simultaneous Quantum Messages Protocols,”
IACR Cryptol. ePrint Arch. 2021: 636 (2021) 



Private Simultaneous Quantum Messages (PSQM)

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3
1-way!

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3

𝑚𝑚1

𝑚𝑚2

𝑚𝑚3

Learns nothing except 
for the output…

23

Perfect Privacy

w.p. 1

Perfect
Correctness

A. Kawachi & H. Nishimura: “Communication Complexity of Private Simultaneous Quantum Messages Protocols,”
IACR Cryptol. ePrint Arch. 2021: 636 (2021) 

shared entanglement
(e-bits)



Quantum Version of Privacy
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𝑘𝑘-party PSQM protocol Π for 𝑓𝑓:𝑋𝑋1 × ⋯× 𝑋𝑋𝑘𝑘 → {0,1} has perfect privacy

Definition

∃𝜌𝜌0∃𝜌𝜌1,∀𝑥𝑥1, … ,∀𝑥𝑥𝑘𝑘:𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 = 𝜌𝜌𝑓𝑓 𝑥𝑥1,…,𝑥𝑥𝑘𝑘

𝜌𝜌0,𝜌𝜌1 = density operators over message space
𝑀𝑀 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 = joint quantum state of Π’s message on inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘

Message state can be determined only by output 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 w/o private inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
= 𝑅𝑅 learns nothing except for 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 .



Communication Complexity in SMP
Randomness vs Entanglement 

• Some designated relation in 2-party S(Q)MP
– Quantum (w/ r-bits): 𝛺𝛺( 𝑛𝑛/ log𝑛𝑛 1/3)
– Classical (w/ e-bits): 𝑂𝑂 log𝑛𝑛

• Equality function (EQ𝑛𝑛 𝑥𝑥1, 𝑥𝑥2 = [𝑥𝑥1 = 𝑥𝑥2]) in 2-party S(Q)MP
– Classical (w/ r-bits): 2𝑛𝑛
– Quantum (w/ e-bits) 𝑛𝑛

[Gavinsky, Kempe, Regev & de Wolf (2009)]

[Horn et al. (2005)]

Exponential Gap

Factor-2 Gap

What about gaps of r-/e-bits in PSQM protocols?

Question 1
Best known gap for total functions!

25

Simultaneous Message Passing
= PSM w/o privacy 



Gaps in Communication Complexity 
between Shared Randomness & Entanglement

What about gaps of r-/e-bits in PSQM protocols?

Question 1

Theorem [K & Nishimura, 2021]

∃total function 𝑓𝑓: 0,1 𝑛𝑛 𝑘𝑘 → 0,1 s.t.
some PSQM protocol w/ e-bits for 𝑓𝑓 has 𝒌𝒌𝒌𝒌/𝟐𝟐-bit messages
& any PSQM protocol w/ r-bits for 𝑓𝑓 requires ≥ 𝒌𝒌𝒌𝒌-bit messages.

E-bits reduce message length by half for a total function
even under privacy-preserving setting! 26



Gaps in Communication Complexity 
between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

∃partial function 𝑓𝑓: 0,1 𝑛𝑛 2 → 0,1 s.t.
some PSM protocol w/ e-bits for 𝑓𝑓 has 𝑶𝑶 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 -bit messages
& any PSQM protocol w/ r-bits for 𝑓𝑓 requires 𝛀𝛀 𝒏𝒏 -bit messages.

E-bits reduce message length exponentially for a partial function
even under privacy-preserving setting!

What about gaps of r-/e-bits in PSQM protocols?

Question 1

27



Communication Lower Bounds in PSM
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Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)]

∀2-party PSM protocol has CC ≥ 𝟑𝟑 − 𝐨𝐨 𝟏𝟏 𝒏𝒏 for random 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 . 

Trivial protocol w/o privacy has CC ≤ 2𝑛𝑛.
Additional cost is inevitable for privacy!

What about lower bounds of PSQM protocols?
Can break (3 − 𝑜𝑜(1))𝑛𝑛 lower bound by quantum communication?

Question 2



Communication Lower Bounds in PSQM

Theorem [K & Nishimura (2021)]

For 1 − 𝑜𝑜(1) fraction of functions 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 , 
∀PSQM protocol w/ r-bits for 𝑓𝑓 has CC ≥ 𝟑𝟑 − 𝒐𝒐 𝟏𝟏 𝒏𝒏.

Privacy requires non-trivial communication cost
even for Q-messages! 29

What about lower bounds of PSQM protocols?
Can break (3 − 𝑜𝑜(1))𝑛𝑛 lower bound by quantum communication?

Question 2



Gaps in Communication Complexity 
between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

∃total function 𝑓𝑓: 0,1 𝑛𝑛 𝑘𝑘 → 0,1 s.t.
some PSQM protocol w/ e-bits for 𝑓𝑓 has 𝒌𝒌𝒌𝒌/𝟐𝟐-bit messages
& any PSQM protocol w/ r-bits for 𝑓𝑓 requires ≥ 𝒌𝒌𝒌𝒌-bit messages.

30



EQ𝑛𝑛 has 2-party SQMP protocol w/ e-bits of message length = 𝑛𝑛.

Proof Strategy

GEQ𝑛𝑛 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 = �1 𝑥𝑥1,1 ⊕⋯⊕ 𝑥𝑥𝑘𝑘,1 = 𝑥𝑥1,2 ⊕⋯⊕ 𝑥𝑥𝑘𝑘,2 = ⋯ = 𝑥𝑥1,𝑛𝑛 ⊕⋯⊕ 𝑥𝑥𝑘𝑘,𝑛𝑛 = 0
0 o. w.

Consider Equality function EQ𝑛𝑛 𝑥𝑥,𝑦𝑦 = 𝐼𝐼 𝑥𝑥 = 𝑦𝑦 (𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛) for 𝑘𝑘 = 2

Theorem [Horn et al. (2005)]

This protocol does NOT satisfy privacy condition…

Randomization of Q-messages encoded by Bell basis

For 𝑘𝑘-party version, use the following generalization:

31

𝑥𝑥1,1 𝑥𝑥1,2
𝑥𝑥2,1 𝑥𝑥2,2

⋯ 𝑥𝑥1,𝑛𝑛
⋯ 𝑥𝑥2,𝑛𝑛

⋮ ⋮
𝑥𝑥𝑘𝑘,1 𝑥𝑥𝑘𝑘,2

⋮ ⋮
⋯ 𝑥𝑥𝑘𝑘,𝑛𝑛

𝑃𝑃1:
𝑃𝑃2:

𝑃𝑃𝑘𝑘:

0 0 0

𝑘𝑘𝑛𝑛-bit lower bound (w/ r-bits) can be obtained by the argument of [Klauck (2007)] 
for one-way quantum communication.



Protocol

32

𝑥𝑥 = 𝑥𝑥1𝑥𝑥2

32

𝑦𝑦 = 𝑦𝑦1𝑦𝑦2

𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′

⟩|Φ =
1
2

⟩|0 𝐴𝐴 ⟩|0 𝐵𝐵 + ⟩|1 𝐴𝐴 ⟩|1 𝐵𝐵

Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.



Protocol

3333

𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′

⟩|Φ =
1
2

⟩|0 𝐴𝐴 ⟩|0 𝐵𝐵 + ⟩|1 𝐴𝐴 ⟩|1 𝐵𝐵

𝑎𝑎 = 𝑎𝑎1𝑎𝑎2

𝑏𝑏 = 𝑏𝑏1𝑏𝑏2

𝑎𝑎 is randomization of 𝑥𝑥 by 𝑟𝑟′.
𝑝𝑝 𝑎𝑎 = 𝑝𝑝(𝑟𝑟′)𝑝𝑝(𝑥𝑥)

𝑏𝑏 is randomization of 𝑦𝑦 by 𝑟𝑟′.
𝑝𝑝 𝑏𝑏 = 𝑝𝑝(𝑟𝑟′)𝑝𝑝(𝑦𝑦) 𝑥𝑥 = 𝑦𝑦 ⇔ 𝑎𝑎 = 𝑏𝑏

Note

Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.

For 𝑥𝑥1, 𝑥𝑥2 ∈ 𝔽𝔽2,
𝑝𝑝(𝑥𝑥1𝑥𝑥2) = 𝑥𝑥1 + 𝑥𝑥2𝛼𝛼 mod 𝑞𝑞(𝛼𝛼),

where 𝑞𝑞(𝛼𝛼) is deg-2 irreducible poly.



⟩|Φ =
1
2

⟩|0 𝐴𝐴 ⟩|0 𝐵𝐵 + ⟩|1 𝐴𝐴 ⟩|1 𝐵𝐵

Protocol

3434

𝑎𝑎 = 𝑎𝑎1𝑎𝑎2

𝑏𝑏 = 𝑏𝑏1𝑏𝑏2

Apply 𝑍𝑍 if 𝑎𝑎2 = 1

Apply 𝑍𝑍 if 𝑏𝑏2 = 1

Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.

𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′



Protocol
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��Φ1 =
1
2

⟩|0 𝐴𝐴 ⟩|0 𝐵𝐵 + −1 𝑎𝑎2+𝑏𝑏2 ⟩|1 𝐴𝐴 ⟩|1 𝐵𝐵

𝑎𝑎 = 𝑎𝑎1𝑎𝑎2

𝑏𝑏 = 𝑏𝑏1𝑏𝑏2

Apply 𝑋𝑋 if 𝑎𝑎1 ⊕ 𝑟𝑟𝐴𝐴 = 1

Apply 𝑋𝑋 if 𝑏𝑏1 ⊕ 𝑟𝑟𝐵𝐵 = 1

Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.

𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′



Protocol

3636

𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′

��Φ2

=
1
2

��𝑎𝑎1 ⊕ 𝑟𝑟𝐴𝐴 𝐴𝐴 ��𝑏𝑏1 ⊕ 𝑟𝑟𝐵𝐵 𝐵𝐵
+ −1 𝑎𝑎2+𝑏𝑏2 ⟩|𝑎𝑎1 ⊕ 𝑟𝑟𝐴𝐴 ⊕ 1 𝐴𝐴 ⟩|𝑏𝑏1 ⊕ 𝑟𝑟𝐵𝐵 ⊕ 1 𝐵𝐵

𝑎𝑎 = 𝑎𝑎1𝑎𝑎2

𝑏𝑏 = 𝑏𝑏1𝑏𝑏2

��Φ2

Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.



Consider GEQ2 𝑥𝑥, 𝑦𝑦 = �1 𝑥𝑥1 ⊕ 𝑦𝑦1 = 𝑥𝑥2 ⊕ 𝑦𝑦2 = 0 ⇔ 𝑥𝑥 = 𝑦𝑦
0 o. w.

Protocol
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𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 s.t 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵
nonzero 𝑟𝑟′ = 𝑟𝑟1′𝑟𝑟2′

��Φ2

=
1
2

��𝑎𝑎1 ⊕ 𝑟𝑟𝐴𝐴 𝐴𝐴 ��𝑏𝑏1 ⊕ 𝑟𝑟𝐵𝐵 𝐵𝐵
+ −1 𝑎𝑎2+𝑏𝑏2 ⟩|𝑎𝑎1 ⊕ 𝑟𝑟𝐴𝐴 ⊕ 1 𝐴𝐴 ⟩|𝑏𝑏1 ⊕ 𝑟𝑟𝐵𝐵 ⊕ 1 𝐵𝐵

𝑎𝑎 = 𝑎𝑎1𝑎𝑎2

𝑏𝑏 = 𝑏𝑏1𝑏𝑏2

��Φ2

Measure in Bell basis:
��Φ00 = ⟩|00 + ⟩|11 , ��Φ10 = ⟩|10 + ⟩|01 ,
��Φ01 = ⟩|00 − ⟩|11 , ��Φ11 = ⟩|10 − ⟩|01

Output 1 iff Φ00 is measured.

Correctness: 
1. 𝑥𝑥 = 𝑦𝑦 ⇔ 𝑎𝑎 = 𝑏𝑏

2. Φ00 is measured ⇔𝑎𝑎1𝑏𝑏1 = 𝑟𝑟𝐴𝐴𝑟𝑟𝐵𝐵 ∧ 𝑎𝑎2 = 𝑏𝑏2
3. 𝑟𝑟𝐴𝐴 = 𝑟𝑟𝐵𝐵

Privacy:
randomization by affine transform with 𝑟𝑟 & 𝑟𝑟′



Gaps in Communication Complexity 
between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

∃partial function 𝑓𝑓: 0,1 𝑛𝑛 2 → 0,1 s.t.
some PSM protocol w/ e-bits for 𝑓𝑓 has 𝑶𝑶 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 -bit messages
& any PSQM protocol w/ r-bits for 𝑓𝑓 requires 𝛀𝛀 𝒏𝒏 -bit messages.

38



DJ𝑛𝑛 has 2-party SMP protocol w/ e-bits of message length = 𝑂𝑂 log𝑛𝑛 .

Proof Strategy

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

Theorem [Brassard et al. (1999)]

This protocol does NOT satisfy privacy condition…

Randomize Q-messages by random affine transform over 𝔽𝔽2𝑛𝑛

distributed 
Deutsch-Jozsa problem

(partial function)

Ω 𝑛𝑛 -bit lower bound (w/ r-bits) can be obtained 
by generalizing the argument of [de Wolf (2001)] for partial functions.
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Protocol

40

𝑥𝑥 = 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛

40

𝑦𝑦 = 𝑦𝑦1 ⋯𝑦𝑦𝑛𝑛

⟩|Φ =
1
𝑛𝑛

�
𝑖𝑖∈ 0,1 𝑚𝑚

⟩|𝑖𝑖 𝐴𝐴 ⟩|𝑖𝑖 𝐵𝐵

𝑛𝑛 = 2𝑚𝑚

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

nonzero 𝑟𝑟
𝑟𝑟′



Protocol

4141

⟩|Φ =
1
𝑛𝑛

�
𝑖𝑖∈ 0,1 𝑚𝑚

⟩|𝑖𝑖 𝐴𝐴 ⟩|𝑖𝑖 𝐵𝐵

𝑛𝑛 = 2𝑚𝑚

Shift phase w/ 𝑥𝑥

Shift phase w/ 𝑦𝑦

𝑥𝑥 = 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛

𝑦𝑦 = 𝑦𝑦1 ⋯𝑦𝑦𝑛𝑛

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

nonzero 𝑟𝑟
𝑟𝑟′



Protocol

4242

�|Φ1 =
1
𝑛𝑛

�
𝑖𝑖∈ 0,1 𝑚𝑚

−1 𝑥𝑥𝑖𝑖 ⟩|𝑖𝑖 𝐴𝐴 −1 𝑦𝑦𝑖𝑖 ⟩|𝑖𝑖 𝐵𝐵

𝑛𝑛 = 2𝑚𝑚

𝑥𝑥 = 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛

𝑦𝑦 = 𝑦𝑦1 ⋯𝑦𝑦𝑛𝑛

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

Apply 𝐻𝐻

Apply 𝐻𝐻

nonzero 𝑟𝑟
𝑟𝑟′



nonzero 𝑟𝑟
𝑟𝑟′

Protocol

4343

��Φ2

=
1

𝑛𝑛 𝑛𝑛
�

𝑖𝑖∈ 0,1 𝑚𝑚

−1 𝑥𝑥𝑖𝑖 �
𝑘𝑘∈ 0,1 𝑚𝑚

−1 𝑖𝑖𝑖𝑖 ⟩|𝑘𝑘 𝐴𝐴 −1 𝑦𝑦𝑖𝑖 �
ℓ∈ 0,1 𝑚𝑚

−1 𝑖𝑖ℓ ⟩|ℓ 𝐵𝐵

𝑥𝑥 = 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛

𝑦𝑦 = 𝑦𝑦1 ⋯𝑦𝑦𝑛𝑛

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

Measure 
in comp. basis

Measure 
in comp. basis



Protocol
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nonzero 𝑟𝑟
𝑟𝑟′

�|Ψ3 = ⟩|𝐾𝐾 𝐴𝐴 ⟩|𝐿𝐿 𝐵𝐵

𝑥𝑥 = 𝑥𝑥1 ⋯𝑥𝑥𝑛𝑛

𝑦𝑦 = 𝑦𝑦1 ⋯𝑦𝑦𝑛𝑛

Consider DJ𝑛𝑛 𝑥𝑥,𝑦𝑦 = �
1 𝑥𝑥 = 𝑦𝑦
0 Δ 𝑥𝑥,𝑦𝑦 = 𝑛𝑛/2 𝑥𝑥,𝑦𝑦 ∈ 0,1 𝑛𝑛 .

𝑚𝑚𝐴𝐴 = 𝑝𝑝 𝑟𝑟 𝑝𝑝 𝐾𝐾 + 𝑝𝑝(𝑟𝑟′)

𝑚𝑚𝐵𝐵 = 𝑝𝑝 𝑟𝑟 𝑝𝑝 𝐿𝐿 + 𝑝𝑝(𝑟𝑟′)

Output 1 iff 𝑚𝑚𝐴𝐴 = 𝑚𝑚𝐵𝐵

Correctness: 
Amplitude of ⟩|𝑘𝑘 𝐴𝐴 ⟩|ℓ 𝐵𝐵 = 𝑛𝑛−3/2 ∑𝑖𝑖 −1 𝑥𝑥𝑖𝑖⊕𝑦𝑦𝑖𝑖 −1 𝑖𝑖 𝑘𝑘⊕ℓ

If 𝑥𝑥 = 𝑦𝑦, 𝐾𝐾 = 𝐿𝐿 and Pr 𝑚𝑚𝐴𝐴 = 𝑚𝑚𝐵𝐵 = 1
o.w. Pr 𝑚𝑚𝐴𝐴 = 𝑚𝑚𝐵𝐵 = 0

Privacy:
randomization by affine transform with 𝑟𝑟 & 𝑟𝑟′



Communication Lower Bounds in PSQM

Theorem [K & Nishimura (2021)]

For 1 − 𝑜𝑜(1) fraction of functions 𝑓𝑓: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 , 
∀PSQM protocol w/ r-bits for 𝑓𝑓 has CC ≥ 𝟑𝟑 − 𝒐𝒐 𝟏𝟏 𝒏𝒏.

45



Proof Strategy (Classical lower bounds)
Run PSM twice independently!

1st message
𝒎𝒎 ∈ 𝑀𝑀

2nd message
𝒎𝒎′ ∈ 𝑀𝑀

Event 𝑃𝑃 = ≡ 𝑚𝑚 = 𝑚𝑚𝑚 ≡ 1st & 2nd messages collide.

Collision prob. ≥ 1/|message domain|    

Fact

46



Proof Strategy (Classical lower bounds)
Run PSM twice independently!

Pr 𝑃𝑃(=) ≥ 1/ 𝑀𝑀 , i.e., log 𝑀𝑀 ≥ log 1
Pr 𝑃𝑃 =

Fact message 
length

UB of Pr 𝑃𝑃 =  LB of message length!

1st message
𝒎𝒎 ∈ 𝑀𝑀

2nd message
𝒎𝒎′ ∈ 𝑀𝑀

Event 𝑃𝑃 = ≡ 𝑚𝑚 = 𝑚𝑚𝑚 ≡ 1st & 2nd messages collide.
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Proof Strategy (Quantum lower bounds)
Run PSQM twice independently!

1st message
𝜌𝜌𝑚𝑚 ∈ ℋ𝑀𝑀

2nd message
𝜌𝜌𝑚𝑚′ ∈ ℋ𝑀𝑀

Event 𝑃𝑃 = ≡ 𝜌𝜌𝑚𝑚 = 𝜌𝜌𝑚𝑚′ ≡ 1st & 2nd messages collide.

Pr 𝑃𝑃(=) ≥ 1/ dimℋ𝑀𝑀 does NOT hold!

Infinite states can live in finite-dimensional ℋ𝑀𝑀…
48



Proof Strategy (Quantum lower bounds)
“collision measure” for Q-messages ??

The purity tr 𝜌𝜌𝑚𝑚2 of Q-message 𝜌𝜌𝑚𝑚 = “how pure 𝜌𝜌𝑚𝑚 is”
= “how much two 𝝆𝝆𝒎𝒎 collide”

tr 𝜌𝜌𝑚𝑚2 ≥ 1/ dimℋ𝑀𝑀, i.e., log(dimℋ𝑀𝑀) ≥ log tr 𝜌𝜌𝑚𝑚2 −1

Fact

UB of tr 𝜌𝜌𝑚𝑚2  LB of Q-message length!

Q-message 
length

Collision probability: Pr 𝑚𝑚 = 𝑚𝑚𝑚

Purity: tr 𝜌𝜌𝑚𝑚2

Classical LB

Quantum LB

Combinatorial analysis of probability

Combinatorial analysis of trace
w/ quantum barriers

49



Open Problems

• Exponential gap of CC in PSM w/ IT privacy
– UB: 2𝑛𝑛/2 for all functions [Beimel et al. (2014)]
– LB: (3 − 𝑜𝑜(1))𝑛𝑛 for almost all functions [Applebaum et al. (2020)]

• cf. DRE has Ω 𝑛𝑛2/log 𝑛𝑛 LB for Element Distinctness [Ball, Holmgren, Ishai, Liu & Malkin (2020)]

• Computational power of PSM w/ IT privacy
– mod𝑝𝑝-L functions have poly CC w/ IT privacy [Ishai & Kushilevitz (1997)]

• P functions have poly CC w/ comp. privacy [Feige, Kushilevitz & Naor (1994)]

• Limitations of entanglement in PSQM
– (3 − 𝑜𝑜(1))𝑛𝑛 LB in PSQM protocols w/ r-bits [K & Nishimura (2021)]
– Can break this LB w/ e-bits, or not?
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