Recent Progress in Private Simultaneous Messages Protocols

Akinori Kawachi

Mie University

Including collaborations with Maki Yoshida (NICT) & Harumichi Nishimura (Nagoya Univ.)

Multi-Party Computation (MPC)

Multi-Party Computation (MPC) [Yao (1986)]

From party P_i 's secret x_i , MPC can compute $y = f(x_1, ..., x_k)$ w/o revealing any information except for y!

Hard to analyze in complex models...

→ simpler communication patterns!

Private Simultaneous Messages (PSM) [Feige, Killian & Naor (1994)], [Ishai & Kushilevitz (1997)]

Information-Theoretically Perfect Privacy

Definition

k-party PSM protocol Π for $f: X_1 \times \cdots \times X_k \rightarrow \{0,1\}$ has **perfect privacy**

$$\exists D_0 \exists D_1, \forall x_1, \dots, \forall x_k: M(x_1, \dots, x_k) \equiv D_{f(x_1, \dots, x_k)}$$

 D_0, D_1 = distributions over message space $M(x_1, ..., x_k)$ = joint distribution of Π 's message on inputs $x_1, ..., x_k$

Message distribution can be determined only by output $f(x_1, ..., x_k)$ w/o private inputs $x_1, ..., x_k$ = R learns nothing except for $f(x_1, ..., x_k)$.

Statistical version: $\Delta(M(x_1, ..., x_k), D_{f(x_1,...,x_k)}) \le \varepsilon$ Computational version: No poly-time adversary distinguish $M(x_1, ..., x_k) \& D_{f(x_1,...,x_k)}$

Positive Results

Theorem [Feige, Kilian & Naor (1994)]

 $\forall f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}, \exists 2\text{-party PSM protocol of } \mathbf{CC} \leq \mathbf{2}^n + n + \mathbf{1}.$

Improved to $O(2^{n/2})$ by Beimel, Ishai, Kumaresan, & Kushilevitz (2014), but still **exponential**! k-party PSM of **CC** $\leq O(k^3 2^{nk/2})$ by Beimel, Kushilevitz & Nissim (2018)

Theorem [Ishai & Kushilevitz (1997)]

 $\forall f: (\{0,1\}^n)^k \rightarrow \{0,1\} \in \text{mod}_p L, \exists k \text{-party PSM protocol of } \mathbf{CC} \leq \mathbf{poly}(k, n)$

Negative Results

Theorem [Beimel, Ishai, Kumaresan & Kushilevitz (2014)]

 \forall 2-party PSM protocol for $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ with **universal reconstruction** requires $\mathbb{CC} \geq 2^n$.

universal reconstruction = referee does not depend on f

FKN protocol (1994) of CC $\leq 2^n + n + 1$ has universal reconstruction, and thus, it has (almost) optimal CC. BIKK protocol (2014) of CC $\leq O(2^{n/2})$ broke this barrier by non-universal reconstruction.

Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)]

 \forall 2-party PSM protocol has $\mathbf{CC} \geq (\mathbf{3} - \mathbf{o}(\mathbf{1}))\mathbf{n}$ for random $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$.

Trivial protocol w/o privacy has $CC \le 2n$. <u>Additional cost is inevitable for privacy!</u>

Randomness Complexity

Positive Results

Explicit constructions of PSM protocols provide upper bounds of RC. For example,

Theorem [Feige, Kilian & Naor (1994)]

 $\forall f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}, \exists 2\text{-party PSM protocol of } \mathbf{RC} \leq \mathbf{2}^n + \mathbf{n}.$

Negative Results

However, little work has been done for lower bounds of RC so far!

Theorem [Pillai, Prabhakaran, Prabhakaran & Sridhar (2019)]

 \forall 2-party PSM protocol for 2-bit input AND: $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ has **RC** $\geq \log 6$.

This shows randomness optimality of k-party PSM protocols for k-bit AND [Feige, Killian, & Naor (1994)] when k = 2.

Randomness Bounds for PSM Protocols

Recent results for tight characterization of randomness complexity by communication complexity

Theorem [K & Yoshida (2021)]

 $\lambda \coloneqq \mathsf{CC}$ of PSM protocols for f , $\rho \coloneqq \mathsf{RC}$ of PSM protocols for f

$$\lambda - 1 \leq \rho \leq \lambda$$

Collorary [K & Yoshida (2021)]

 \forall 2-party PSM protocol for $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ with **universal reconstruction** has $\mathbf{RC} \ge 2^n - 1$.

A. Kawachi & M. Yoshida: "Randomness Bounds for Private Simultaneous Messages and Conditional Disclosure of Secrets," IACR Cryptol. ePrint Arch. 2021: 1037 (2021)

Proof Idea: Randomness Lower Bounds $\rho \geq \lambda - 1$

Proof Idea: Randomness Lower Bounds $\rho \geq \lambda - 1$

Proof Idea: Randomness Upper Bounds $\rho \leq \lambda$

Randomness sparsification [Newman (1991)]

Common technique for saving randomness in communication protocols

The converted protocol works well w.h.p. (w.r.t. G) with **additional error**! (e.g., randomness sparsification for stat-private CDS [Applebaum & Vasudevan (2021)])

Problem: **NOT** applicable in our **perfect-privacy** setting!

Proof Idea: Randomness Upper Bounds $\rho \leq \lambda$

Our new strategy: algorithmically convert the protocol as preserving the perfect privacy

Find collisions in randomness space & delete one in preimage!

For private inputs x_1, x_2, \dots, x_k for which $f(x_1, x_2, \dots, x_k) = 0$

For another input
$$(x'_1, x'_2, \dots, x'_k)$$
 for which $f(x'_1, x'_2, \dots, x'_k) = 0$

Deleted elements are **inconsistent** in $(x_1, x_2, ..., x_k) \& (x'_1, x'_2, ..., x'_k)$. Permute \mathcal{R} for $P_1(x'_1; \cdot), ..., P_k(x'_k; \cdot)$ to coincide r'_2 with r_2 !

Deleted elements are **inconsistent** in $(x_1, x_2, ..., x_k) \& (x'_1, x'_2, ..., x'_k)$.

Permute \mathcal{R} for $P_1(x'_1; \cdot), \dots, P_k(x'_k; \cdot)$ to coincide r'_2 with r_2 !

By repeating deletions, get $|\mathcal{R}| \leq |\mathcal{M}_0|$ (or $\rho \leq |\mathcal{R}| \leq \max\{|\mathcal{M}_0|, |\mathcal{M}_1|\} \leq \lambda$)

Additional Remark

Our bounds are **exactly tight** for size of message/randomness space.

Theorem $\mathcal{M}_b := b$ -message space of PSM protocols of optimal CC for f ($b \in \{0,1\}$),
 $\mathcal{R} :=$ randomness space of PSM protocols for f $|\mathcal{R}| = \max\{|\mathcal{M}_0|, |\mathcal{M}_1|\}$

Related Models with PSM

Decomposable Randomized Encoding (DRE) [Applebaum, Ishai & Kushilevitz (2004)]

- \blacktriangleright DRE \approx PSM in which every party has 1-bit inputs.
 - DRE implies PSM.
- > DRE has extremely efficient encoding procedure (=parties).

Ad-hoc PSM [Beimel, Gabizon, Ishai & Kushilevitz (2016)]

> PSM in which a part of parties participate at actual execution.

Non-interactive MPC (NIMPC)

[Beimel, Gabizon, Ishai, Kushilevitz, Meldgaard & Paskin-Cherniavsky (2014)]

- Referee & some of parties may be corrupted by adversary.
- ➢ PSM→NIMPC [Benhamouda, Krawczyk & Rabin (2017)], [Eriguchi, Ohara, Nuida & Yamada (2021)]

Quantum versions of PSM

- for quantum circuits (Q-DRE, Q-garbled circuits) [Brakerski & Yuen (2020)]
- for Boolean functions (PSQM) [K & Nishimura (2021)]

Private Simultaneous Quantum Messages (PSQM)

A. Kawachi & H. Nishimura: "Communication Complexity of Private Simultaneous Quantum Messages Protocols," IACR Cryptol. ePrint Arch. 2021: 636 (2021)

Private Simultaneous Quantum Messages (PSQM)

A. Kawachi & H. Nishimura: "Communication Complexity of Private Simultaneous Quantum Messages Protocols," IACR Cryptol. ePrint Arch. 2021: 636 (2021)

Quantum Version of Privacy

Definition

k-party PS**Q**M protocol Π for $f: X_1 \times \cdots \times X_k \rightarrow \{0,1\}$ has **perfect privacy**

$$\exists \rho_0 \exists \rho_1, \forall x_1, \dots, \forall x_k: M(x_1, \dots, x_k) = \rho_{f(x_1, \dots, x_k)}$$

 ρ_0, ρ_1 = density operators over message space $M(x_1, ..., x_k)$ = joint quantum state of Π 's message on inputs $x_1, ..., x_k$

Message state can be determined only by output $f(x_1, ..., x_k)$ w/o private inputs $x_1, ..., x_k$ = R learns nothing except for $f(x_1, ..., x_k)$. Communication Complexity in SMP Randomness vs Entanglement Simultane

IT Simultaneous Message Passing = PSM w/o privacy

[Gavinsky, Kempe, Regev & de Wolf (2009)]

- Some designated relation in 2-party S(Q)MP
 - Quantum (w/ r-bits): $\Omega((n/\log n)^{1/3})$
 - Classical (w/ e-bits): $O(\log n)$

Exponential Gap

• Equality function (EQ_n(x_1, x_2) = [$x_1 = x_2$]) in 2-party S(**Q**)MP

25

Gaps in Communication Complexity between Shared Randomness & Entanglement

Question 1

What about gaps of r-/e-bits in PSQM protocols?

Theorem [K & Nishimura, 2021]

 $\exists \text{total function } f: (\{0,1\}^n)^k \to \{0,1\} \text{ s.t.}$

some PSQM protocol w/ e-bits for f has kn/2-bit messages & any PSQM protocol w/ r-bits for f requires $\geq kn$ -bit messages.

E-bits reduce message length by half for a total function even under privacy-preserving setting!

Gaps in Communication Complexity between Shared Randomness & Entanglement

Question 1

What about gaps of r-/e-bits in PSQM protocols?

Theorem [K & Nishimura, 2021]

 $\exists \text{partial function } f: (\{0,1\}^n)^2 \rightarrow \{0,1\} \text{ s.t.}$

some PSM protocol w/ e-bits for f has $O(\log n)$ -bit messages & any PSQM protocol w/ r-bits for f requires $\Omega(n)$ -bit messages.

E-bits reduce message length **exponentially** for a **partial function** even under privacy-preserving setting!

Communication Lower Bounds in PSM

Theorem [Applebaum, Holenstein, Mishra & Shayevitz (2020)]

 \forall 2-party PSM protocol has $\mathbf{CC} \ge (\mathbf{3} - \mathbf{o}(\mathbf{1}))\mathbf{n}$ for random $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$.

Trivial protocol w/o privacy has $CC \le 2n$. Additional cost is inevitable for privacy!

Question 2

What about lower bounds of PSQM protocols?

Can break (3 - o(1))n lower bound by quantum communication?

Communication Lower Bounds in PSQM

Question 2

What about lower bounds of PSQM protocols? Can break (3 - o(1))n lower bound by quantum communication?

Theorem [K & Nishimura (2021)]

For 1 - o(1) fraction of functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$, $\forall \mathsf{PSQM} \text{ protocol } w/ \text{ r-bits for } f \text{ has } \mathsf{CC} \ge (3 - o(1))n.$

Privacy requires non-trivial communication cost even for **Q**-messages!

Gaps in Communication Complexity between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

 $\exists \text{total function } f: (\{0,1\}^n)^k \rightarrow \{0,1\} \text{ s.t.}$

some PSQM protocol w/ e-bits for f has kn/2-bit messages & any PSQM protocol w/ r-bits for f requires $\geq kn$ -bit messages.

Proof Strategy

Consider Equality function $EQ_n(x, y) = I[x = y]$ $(x, y \in \{0,1\}^n)$ for k = 2

Theorem [Horn et al. (2005)]

EQ_n has 2-party SQMP protocol w/ e-bits of message length = n.

kn-bit lower bound (w/r-bits) can be obtained by the argument of [Klauck (2007)] for one-way quantum communication.

Gaps in Communication Complexity between Shared Randomness & Entanglement

Theorem [K & Nishimura, 2021]

 $\exists \text{partial function } f: (\{0,1\}^n)^2 \rightarrow \{0,1\} \text{ s.t.}$

some PSM protocol w/ e-bits for f has $O(\log n)$ -bit messages & any PSQM protocol w/ r-bits for f requires $\Omega(n)$ -bit messages.

distributed
Deutsch-Jozsa problem
(partial function)
Consider
$$DJ_n(x, y) = \begin{cases} 1 & x = y \\ 0 & \Delta(x, y) = n/2 \end{cases}$$
 $(x, y \in \{0, 1\}^n).$

Theorem [Brassard et al. (1999)]

 DJ_n has 2-party SMP protocol w/ e-bits of message length = $O(\log n)$.

This protocol does NOT satisfy privacy condition...

Randomize **Q**-messages by random affine transform over \mathbb{F}_2^n

 $\Omega(n)$ -bit lower bound (w/r-bits) can be obtained by generalizing the argument of [de Wolf (2001)] for partial functions.

Communication Lower Bounds in PSQM

Theorem [K & Nishimura (2021)]

For 1 - o(1) fraction of functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$, $\forall \mathsf{PSQM} \text{ protocol } w/ \text{ r-bits for } f \text{ has } \mathsf{CC} \ge (3 - o(1))n.$

Proof Strategy (Classical lower bounds)

Run PSM twice independently!

Collision prob. $\geq 1/|message domain|$

Proof Strategy (Classical lower bounds)

Run PSM twice independently!

UB of $\Pr[P^{(=)}] \rightarrow LB$ of message length!

Proof Strategy (Quantum lower bounds)

Run PSQM twice independently!

Event $P^{(=)} \equiv [\rho_m = \rho_{m'}] \equiv 1^{\text{st}} \& 2^{\text{nd}}$ messages collide.

 $\Pr[P^{(=)}] \ge 1/\dim \mathcal{H}_M$ does **NOT** hold!

Infinite states can live in finite-dimensional \mathcal{H}_M ...

Proof Strategy (Quantum lower bounds)

"collision measure" for **Q**-messages ??

The **purity** $tr(\rho_m^2)$ of **Q**-message ρ_m = "how pure ρ_m is" = "how much two ρ_m collide" **Q**-message Fact length $\operatorname{tr}(\rho_m^2) \ge 1/\dim \mathcal{H}_M$, i.e., $\log(\dim \mathcal{H}_M) \ge \log(\operatorname{tr}(\rho_m^2)^{-1})$ UB of tr(ρ_m^2) \rightarrow LB of **Q**-message length! Collision probability: $\Pr[m = m']$ Classical LB Combinatorial analysis of probability Combinatorial analysis of trace Purity: $tr(\rho_m^2)$ Quantum LB w/ quantum barriers

Open Problems

- Exponential gap of CC in PSM w/ IT privacy
 - UB: $2^{n/2}$ for all functions [Beimel et al. (2014)]
 - LB: (3 o(1))n for almost all functions [Applebaum et al. (2020)]
 - cf. DRE has $\Omega(n^2/\log n)$ LB for Element Distinctness [Ball, Holmgren, Ishai, Liu & Malkin (2020)]
- Computational power of PSM w/ IT privacy
 - \mod_p -L functions have poly CC w/ IT privacy [Ishai & Kushilevitz (1997)]
 - P functions have poly CC w/ comp. privacy [Feige, Kushilevitz & Naor (1994)]
- Limitations of entanglement in PSQM
 - -(3 o(1))n LB in PSQM protocols w/r-bits [K & Nishimura (2021)]
 - Can break this LB w/ e-bits, or not?