MEEkE=
EFREERLMETES
®RIKKYO UNIVERSITY " eexs

(Zoom|Z&KBFATA 2 FHE)

ENINILBIEZfELT=HD
BFEEJHHNETOXRREREL S E

20223 H18H (&)
11:00~12:00
T HHE B (LK)

Basics on Lattices ® RIKKYO UNIVERSITY

: : Integral combination
* For linearly independent by, ...,b, € 2%, -~ "7
7

=L (bt = {z xlbl| x; € Z}

=1
is a (full-rank) lattice of dimension n
— B = (b4, ...,b,): a basis of L

e Regard it as the nXn matrix

— Infinitely many bases if n = 2 ¢ Ty

* |If B; and B, span the same lattice,
* then 3V € GL,,(Z) such that B; = B,V

— vol(L) = |det(B)| : the volume of L
* Independent of the choice of bases A lattice of dimension n = 2

2

Lattices in Cryptography ®RIKKYO UNIVERSITY

e Post-Quantum Cryptography (PQC) Standardization

— Since 2015, National Institute of Standards and Technology (NIST) has
proceeded a standardization project for PQC

* To standardize quantum-resistant public-key cryptographic algorithms
e Post-Quantum Cryptography | CSRC (nist.gov)
— In July 2020, NIST selected 7 Finalists and 8 Alternates

7 lattice-based schemes are now in evaluation at the 3 round
— 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)
— 2 Alternates (FrodoKEM, NTRUprime)

Signatures KEM/Encryption Overall Finalists Alternates
Rd1 |Rd2| Rd1 Rd2 | Rd1 | Rd2 L ke M
- KEMs/Encryption | SABER HQC
Lattice-based 5 3 21 9 26 12 Classic McEliece NTRUprime
Code-based 7 17 74 19 7 SIKE
Multi-variate 7 4 2 9 4 , Dilithium GeMSS
' Signatures Falcon Picnic
Hash/Symmetrlc 3 2 3 2 Rainbow SPHINCS+
Other 7 5 1
NIST Status Update on the 3rd Round (PDF) 3
Total 19 10 45 16 64 26

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf

[attice Problems ® RIKKYO UNIVERSITY

e Algorithmic problems for lattices 2
—[SVP (Shortest Vector Problem)] Our focus b,
* Given a basis B = (b4, ..., b,) of a lattice L
* Find a non-zero shortest vector in L 3 L%
— CVP (Closest Vector Problem)

— LWE (Learning with Errors)
— NTRU, etc.

* Relationship with cryptography

SVP in a two-dimensional lattice
— The security of lattice-based cryptography is -« Given linearly independent by, b,
based on the hardness of lattice problems * Find a non-zero shortest vector

: = a;b b, f ,a, €T
— In particular, the hardness of SVP and CVP o e ladge e TSy T
supports the security of most schemes

Known Results for A{ (L) ®RIKKYO UNIVERSITY

* The first successive minimum

— Define A,(L) as the length of a non-zero shortest vector in a lattice L
— SVP is the problem that finds s € L such that ||s|| = A4;(L)

* Theoretical results

— Minkowski’s convex body theorem implies
P 1
(L) < 2w, vol(L)n
for any lattice L of dimension n (w,,: the volume of the unit ball in R™)

 Heuristic results

— The Gaussian Heuristic implies
L 1 1
M (L) = w,"vol(L)n ~ \/n/Zne vol(L)n =: GH(L)

* The Gaussian Heuristic: The number of vectorsin L N S is roughly equal to
vol(S) /vol(L) for a measurable set S in R"

* It holds in practice for “random” lattices in high dimensions n = 50 5

VP Challenge

& RIKKYO UNIVERSITY

The Darmstadt SVP challenge

— Sample bases B = (b4, ..., b,,) are
presented for dimensions 40 < n < 198

— Any vectorv € L = L(B) of length
lv|| < 1.05GH(L) =~ 1.054,(L)
can be submitted to the hall of fame
e That is, approximate SVP with factor 1.05

— The current highest dimension to be
solved is m = 180 (141.pdf (iacr.org))

* |t took about 51.6 days on a server with 4
NVIDIA Turing GPUs with 1.5 TB RAM

* But the record must be not the shortest
(since its approximation factor is about 1.04)

INTRODUCTION

This page presents sample lattices for testing algorithms that solve the shortest vector
problem (SVP) in euclidean lattices. The SVP challenge helps assessing the strength of SVP
algorithms, and serves to compare different types of algorithms, like sieving and
enumeration. The lattices presented here are random lattices in the sense of Goldstein and
Mayer.

PARTICIPATION

How to participate:

You can either

= download a sample lattice on the right side, or

= use the generator online to produce a lattice with (integer) seeds of your choice, or

= download the generator and install it with an NTL older than NTL 9.4 (necessary since
NTL 9.4 and later versions use a different pseudorandom number generator) to create
challenges on your local machine.

How to enter the Hall of Fame:
To enter the hall of fame, you have to submit a vector with
= Higher dimension and Euclidean norm less than

. 1/n
/2407 Lyt

1.05 -
(which is an estimation of the length of a shortest vector in the lattice), or
= A shorter vector than a previous one in the same dimension (with possibly different seed)
Acknowledgment:
Special thanks to Yuntao Wang and Junpei Yamaguchi for pointing out the change in the NTL

pseudorandom generator and to Yuntao Wang for helping with the online version of the
generator.

HALL OF FAME

Position Dimension Eu:‘l;:i':an Seed Contestant Solution

L. Ducas, M. Stevens, W. van
. L 3309 0 Woerden MEC
> 178 3447 0 L. Ducas, M. Stevens, W. van Ve
Woerden fiand

L. Ducas, M. Stevens, W. van
3 176 3487 0 Sl vec
4 170 3438 0 L. Ducas, M. Stevens, W. van .
Woerden i

Sho Hasegawa, Yuntao Wang, Eiichiro

5 158 3240 0 Fujisaki vec

Format of challenges

Download example lattices
(generated with seed=0)

40 42 46 48

170 172 174 176 178
180 182 184 186 188
190 192 194 196 198

Visual Hall of Fame
Latticechallenge

Ideal Lattice Challenge

LWE Challenge

SVP Challenge (latticechallenge.org) 6

https://eprint.iacr.org/2021/141.pdf
https://www.latticechallenge.org/svp-challenge/

Lattice Basis Reduction ®RIKKYO UNIVERSITY

e Strong tool for solving lattice problems including SVP

— Find a basis B = (bq, ..., b,;) with short and nearly orthogonal vectors

* Such a basis is called “good” or “reduced”

* Some basis vectors b;’s are very short bs\ sasic I T b,
: ; . : b, | transformations [b,
— Consist of basic unimodular transformations SN Bl B
@ Multiply by (-1): b; « —b; b, b,
)) Input basis Output basis
@ PWap bl L bJ (Bad basis) (Good basis)
@ Multiply (by integer)-Add: b; < b;+ab; (a € Z)
Badbesis 1 -, Goodbagis 1 = -,
° : y ° s % obz ° 3 . ° b2 i ° :
: Yies b1 Unimodular \ 'bi\/ poirx Ao
N s Transformation / ; 7 &
nearly nearly
parallel orthogonal
[] [] [] [] 7

LLL (1/3):
Definition and Properties @ RIKKYO UNIVERSITY

* Lenstra-Lenstra-Lovasz (LLL)-reduction [t182]
— B = (b4, ...,b,) is 6-LLL-reduced if it satisfies two conditions
@ Size-reduced: |y;;| < Lforalll<j<i<n
@ Lovasz’ condition: [|by |12 = (6 — pf —1)lIbj_4 |2
— }< 6 < 1:reduction parameter (e.g., § = 0.99 for practice)
— B* = (b3, ..., by), u = (u;j): Gram-Schmidt information of B:

5 (b;, b’
; = bli bj - bi 7 ;zllnul]b]*' Hij = l*]2>
5]

— Every LLL-reduced basis B = (b4, ..., b,,) of a lattice L satisfies
n-1
4

n-1 4
* llbsll = @2 A4(L), wherea = —> ~

n-—1

1
* |Ibq]l £ a”+ vol(L)n

[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovasz, “Factoring polynomials with rational coefficients”,
Mathematische Annalen 261 (4): 515—534 (1982).

LLL (2/3):
Basic Algorithm & RIKKYO UNIVERSITY

* |t consists of two procedures to find an LLL-reduced basis
@ Ssize-reduction: b, < b;, — gb; with q = | ;]
@ Swap adjacent vectors: b,,_; < b, if they do not satisfy Lovasz’ condition

Algorithm: The basic LLL Lenstra et al. (1982)

Input: AbasisB = (by,...,b,)ofalattice L, and areduction parameter% < g1
Output: A §-LLL-reduced basis B of L
I: Compute Gram—Schmidt information p; ; and ||b}"||2 of the input basis B
2: k «— 2
3: while k < n do
@ [4: Size-reduce B = (by, ..., b,) // Ateachk, we recursively change by < b; —]
Lk j1bj for1 < j <k — 1 (e.g., see Galbraith 2012, Algorithm 24)

5. 1if (by_,, by) satisfies Lovasz™ condition then
6: k —k+1
7: else
@ 8: Swap by with by, and update Gram—Schmidt information of B
0: k <~ max(k — 1, 2)

10: end if
11: end while

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15

LLL (3/3):

Sage Code & RIKKYO UNIVERSITY
T R a0, n = 10; d = 100000
mu = Matrix(QQ, n) B = Matrix(ZZ, n)

4 v for i in range(n):
GS[i] = B[i]
muli, i] =1
for j in range(i):
muli, j1 = B[i]. inner_product (GS[j])/GS[j]. norm() "2
GSLi] —= muli, j1*GS[j]
return GS, mu

|

12v def LLL(B, n, delta):

13 GS, mu = GSO(B, n)

14 BB = vector (QQ, n)

15v for i in range(n):

16 s BBLi] = GS[i].norm() "2

18 v while k<=n-1:
19 v for j in range(k) [::-1]:
20 v if abs(mulk, j1)> 0.50:
21 g=round (mu[k, jI)
Blk] —= a*B[j]
23 v for | in range(j+1):
24 mulk, 1] —= og*mulj, |]
25 v i f BE[k% >= (delta — mulk, k-11"2)*BB[k-1]:
‘ i
21~ else:
28 v = B[k-1]; B[k-1]=B[k]; Blk]l=v;
GS, mu=GSO (B, n)
for i in range(n):
BBLi] = GS[i].norm() "2
k=max (k-1, 1)
return true

37+ for i in range (0, n):

BLi. =1
BLi, 0] = randint(-d, d)
print ("Input basis”)
show (B)
LLL (B, n, 0.99)
print ("¥nOutput basis”)
show (B)

Please use
Sage Cell Server
(sagemath.org)

10

https://sagecell.sagemath.org/

Enumeration (1/3):
Basic Idea & RIKKKYO UNIVERSITY

* Enumerate all vectors s = Yv;b; € L(B) such that ||s|| < R

— R > 0:search radius (e.g., R = 1.05GH(L)) A
— With Gram-Schmidt information, write

n n
Q= Z <U] + Z ,ul-jvi> bj* “,\ bl

Tt i=j+1 £ 5
— By the orthogonality of Gram-Schmidt vectors, /
2
Ime@I? = > v+ > wywi | Il
j=k i=j+1

for 1 < k < n, where m;, denotes the projection map to (b, ..., by)r

— Consider n inequalities||m, (s)||* < R?* for1 < k < n:
(n g 2L
vy <

/b2

3 2 _ R? —v?||b:||?
(vn—l +.un,n—1vn) < alal /”b:l_l”z
\ : 11

Enumeration (2/3):
Basic Algorithm ® RIKKYO UNIVERSITY

Algorithm: The basic Schnorr-Euchner enumeration Schnorr and Euchner

(1994)
Input: A basis B = (by,...,b,) of alattice L and a radius R with A,(L) < R e Enumerate lattice vectors
Output: The shortest non-zero vectors =) ', v;b; in L - e
1: Compute Gram—Schmidt information y; ; and ||b¥||* of B s=2vb; EL
DBl e Pt V=0 i s T = (L 06 o O ot = O such that [|s|| < R
0 e Built an enumeration tree

3: k =1,last_nonzero =1 //largesti for which v; # 0

4: while true do

50 Pk < Pt + e —) - DI 1 pr = |l ()12

6: if px < R? then

7: if Kk = 1 then R? < pi, s < Y '_, v;b;; // update the squared radius
8

9

to find integral
combinations (vq, ..., V)

else k —k—1,¢; «— — Z:‘I=k+l HixVi, Vi < |ck], wr < 1;

else
10: k < k + 1 // going up the tree
il if kK = n + 1 then return s;
12: if kK > last_nonzero then last_nonzero < k, vy < vy + 1;
13: else
14: if vi > ci then vy < vp — wy; else v < v + wy; // zig-zag search
15: wr <— wi + 1
16: end if
17: end if

18: end while

: 12
A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15

Enumeration (3/3):
Sage Code

& RIKKYO UNIVERSITY

S Sponldy NN N SN LN o Y

1 def GSO(B, n):

2 S Matrix (QQ, n)
3 = Matrix(QQ, n)
4~ for i in range(n):
5 GS[i] = B[il

6 muli, i] =1

] v for j in range(ﬂ

8 mu[| i1 = B[il. inner_product (GS[j]1) /GS[j]l. norm() "2
S[il == mUEI J1=%GS[]]

return GS mu

2 v def ENUM(B., n, R):

3 GS., mu = GSO(B. n)

4 BB = vector (QQ, n)

5v for i in range(n):

6 BB[i] = GS[i].norm() "2
sigma = Matrix(QQ, n+1, n)
r = vector (ZZ, n+1)

rho = vector (QQ. n+1)

v vector (ZZ, n)

c = vector (QQ, n)
25 w = vector (ZZ, n)
23 v for’ i In range(n+1)
) A r[l]
v[0] =
Iast nonzero =1
28 Wil Les 13-
29 rho[k-1] = rho[k] + (v[k 11 - c[k-1]1) "2%BB[k-11]
30 v i-f RRérEo[k 11) <= RR(QR)
) > I ==
32 : Er{nt(“Solution found”): return v
34 rlk-11 = max(r[k=11. r[k])
v for i in range(k+1, r[k]+1)[::=1]:

sigmali-1, k-1] = sigmali, k-1] + mu[i—-1, k-1]*v[i-1]

/ c[k-1] = -sigmal[k, k-1]

8 v[k=1] = round(c[k-11)

9 wlk-1] =1

O else:

1 k = k+1

2~ if k==n+1:

3 print ("No solution™); return false
4 r[k-11 = k

DY if k>=last_nonzero:

last_nonzero = k
vlk-1] = v[k-1] + 1

8 v else:

9ty if RR(v[k=1]) > RR(c[k-11):
: vlk-11 = v[k-11 - w[k-1]
[v else:

[k 11 = v[k- 1] + wlk-1]
wlk- 1] = wlk-1]1 +

55 #Main

5 |n =20

57 B = random_matrix(ZZ, n, x=0, y = 30)
58 B.LLLQ

BN oF Tnt CEEL- S aliiesd asss S B
50 R = 0.99+RR (B[0]. norm 0 2)
|

61 v|while (1):
62 v = vector (ZZ, n)
Q; v = ENUMB, n, R)

if v I= false:
vec = v[0]*B[0]
for i in range(1, n):
vec += v[i]*B[i]

68 R = 0. 99%RR (vec. norm() "2)

69 print ("Norm=", RR(vec.norm()), ”, Vector=",
70 v else:

11 break

72 print("End”)

13

vec)

BKZ (1/3):
Definition and Properties ®RIKKYO UNIVERSITY

e Block Korkine-Zolotarev (BKZ)-reduction
— A blockwise generalization of LLL with blocksize
— B = (b4, ..., b,,) is f-BKZ-reduced if it satisfies two conditions
D It is size-reduced (same as LLL)

@ The k-th Gram-Schmidt vector b}, is shortest in Lk, oy With £ =
min(k +f —1, n)foralll1 <k <n

Lz, g+ - ma(by) - m2(bgs1)
L[n—ﬁ+l. n] - ﬂn—ﬁ+l(bn—ﬁ+l) o s 7rn—ﬂ+l(bn)

— Every [-BKZ-reduced basis B = (by, ..., b,;) of a lattice L satisfies

n-1
Ibyll < ¥; A (L)

* yp:Hermite’s constant of dimension §, i.e., yg = sup Al(L)Z/vol(L)Z/"
L

1/(B

. As 5 increases, Vg Y decreases and thus b, can be shorter 14

BKZ (2/3):
Basic Algorithm & RIKKYO UNIVERSITY
* It consists of LLL and ENUM:

— Call ENUM to find a non-zero shortest vector in Ly ¢

— Call LLL to reduce a projected block basis of Ly ¢

Algorithm: The basic BKZ Schnorr and Euchner (1994)

Input: A basisB = (by, ..., b,) of alattice L, ablocksize 2 < < n, and a reduc- !/::1\\ Block of
tion parameter % <8 <1of LLL .2 size B
Output: A g-DeepBKZ-reduced basis B of L g
I: B <~ LLL(B, §) // Compute u; ; and ||bj |* of the new basis B together

2: z A7 <10
3: whilez <n—1do \ :
b,

4: j<«— (modr—1D)+1L k< min(j+B8—1,n).h < mink+1,n)

5: Find v € L such that ||7;(v)|| = A;(L[;) by enumeration or sieve

6: if (V)] < [[b%]* then ¢ As reference,

7: z <« 0 and c?all LLL((by,..., b.,-_l.\.', B o b,,.), 3) // Insert v € L and pIease look at
remove the linear dependency to obtain a new basis

§: alke BKZ-60 — YouTube

9: z < z+ landcall LLL((by,...,bs),d) by Martin Albrecht

10: end if

11: end while

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink 15

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15
https://www.youtube.com/watch?v=cNNLrmbWsa4

BKZ (3/3):
Sage Code

RIKKYO UNIVERSITY

12 def ENUM(B, n, R, g, h):
1153 BB, U = GSO(B, n)

14 Bnn = vector (QQ, n)
15 for i in range(n):
1¢ Bnn[i] = BB[i] .norm() "2
17 BB, U = GSO(B, n)
18 sigma = Matrix(QQ, n+l, n)
19 r = vector(ZzZ, n+1l)
20 rho = vector (QQ, n+1l)
v = vector(2z, n)
c = vector(QQ, n)
w = vector(Zz, n)
24 for i in range(n+1):
25 Bl -=ha
2¢ vig] =1
277 last_nonzero = 1
k=g + 1
flag = O
30 vl = vector (ZZ, n)
31 while (1):
32 rho[k-1] = rho[k] + (v[k-1] - c[k-1])"2*Bnn[k-1]
33 if rhol[k-1] <= R:
34 if k==g+1:
35 R = 0.99*rho[k-1]
3 € flag += 1
37 for i in range(n):
vli[i] = v[i]
39 k = k-1
40 r[k-1] = max(r[k-1], r[k])
41 for i in range(k+1, r[k]+1)[::-1]:
42 sigma[i-1, k-1] = sigma[i, k-1] + U[i-1,
43 c[k-1] = -sigmalk, k-1]
44 v[k-1] = round(c[k-1])
A wlk-1] =1
46 else:
4 k = k+1
4 if k==h+1:
A

9 if flag == O0:
50 return False
51 else:
2 vv = v1[g]*B[g]

for i in range(g+l, h+l):

return vv

rik=1] =k
7 if k>=last nonzero:
5 last_nonzero = k
59 Vilk=1] = ‘v[k=1] + 1
60 else:
61 if vik-1] > c[k-1]:
62 v[k-1] = v[k-1]
63 else:
64 v[ik-1] = v[k-1]
65 w[k-1] = w[k-1] + 1

vv += v1[i]*B[i]

- w[k-1]

+ wlk-1]

k-1]1*v[i-1]

]
1
1
1
1
1

oD W

def BKZ (B, n, block):

B.LLL ()
BB, U = GSO(B, n)
Bnn = vector (QQ, n)
for i in range(n):
Bnn[i] = BB[i] .norm() "2
z =0

while z < n-1:

k = 1lift (mod(k+1l, n-2))

1 = min(k+block-1, n-1)
min(l1l+1, n-1)
print("(k, 1, h) =", k, 1, h)

o)
Il

R = 0.99*Bnn[k]

v =0
v = ENUM(B, n, R, k, 1)
if v !'= 0:

z =20

C = Matrix(Z2Z, h+1, n)

for i in range(k):
C[i] = BI[i]

C[k] = v

for i in range(k+1, h+1):
C[i] = B[i-1]

C = C.LLL()

for i in range(l, h+1l):
B[i-1] = C[i]

BB, U = GSO(B, n)

Bnn = vector (QQ, n)

for i in range(n):
Bnn[i] = BB[i] .norm() "2

= GSO (B, n)

vector (QQ, n)

for i in range(n):

Bnn[i] = BB[i] .norm() "2

z
B = B.LLL()
U

n = 20; 4 = 1000000
B = Matrix(ZZ, n)
for i in range (0, n):

B[, 4 =i
B[i, 0] = randint(-d, d)
show (B)
B = B.LLL()
BKZ (B, n, 10) 16

show (B)

DeepBKZ (1/6):
New Reduction

& RIKKYO UNIVERSITY

* The most famous and typical

be swapped

* Only adjacent basis vectors can

~

J

%me algorithm

insertion
improvement

DeeplLL

Blockwise generalization of LLL
It calls enumeration over block

projected lattices, and LLL before
enumeration

Blockwise

genera”zation “

Simple generalization of LLL)
* Non-adjacent basis vectors can
be swapped
\.* Nolonger polynomial-time -

Enhancement

“DeepBKZ”

|

New Reduction [YY17]
A combination of DeeplLLL and BKZ

[YY17] J. Yamaguchi and M. Yasuda, Explicit formula for Gram-Schmidt vectors in LLL with deep insertions and its applications, 17
in: NuTMIiC 2017, Lecture Notes in Computer Science 10737, Springer, pp. 142-160, 2017.

DeepBKZ (2/6):

Basic Construction B RISY Q) HINNERSITY
Forward t
Enhancement of BKZ a0
. : byy by [bin
— Call DeeplLLL as a subroutine in BKZ byy [By, 2
Local block :
* DeepllLL is a straightforward bases (dim=)
generalization of LLL \bm b,
* Itis cfalled t?efore evgry SVP oracle over A) DeeplLL in global
a B-dimensional lattice B) SVP oracle over local blocks
LLL DeeplLL
Only adjacent basis vectors are swapped Non-adjacent basis vectors can be changed
= shorter basis vectors can be found
B < (by,...,b;;1,b;,....,b,) B < (by,..,by,b;,...,b_1,br11,....,b,)
New basis vswap K /deep insertion

Features
— Even small B can find a very short lattice vector

— DeeplLL is somewhat costly
— But for =30, SVP-calls are dominant and the cost is same as BKZ 138

DeepBKZ (3/6):

Gram-Schmidt Formula

& RIKKYO UNIVERSITY

Complex basis transformation (general form)

— B=(by,..,by) = C= (by, .., by (Wb, ..

[} V:

n xb; =Y, v;b; for some x; € Z with x, = +1

Gram-Schmidt formula in DeepLLLIYY*15, YY17]
— This enables to make DeeplLLL practical like LLL

[YY+15] M. Yasuda, K. Yokoyama et al. Analysis of decreasing squared-sum of Gram-Schmidt lengths for short lattice vectors,

Proposition: Gram-Schmidt orthogonalization [c], ..., c}] of C
Set m = max{k <i < n|vj# 0}. Then we have

r m
D vib; for j = k,
b ™ vy |b |12
VI U LTy
Dj_l)= : Dj—l I

=

\

where Dy = Y7, v2||b||2 for 1 < ¢ < m. In particular, ¢, ; = 0.

For k +1 < j < m, we have

2 = =

c:
||] DJ—]_

167 _[2.

’ bn—l)

fork+1<,;<m+1,

bj’-‘_1 form+2<;<n+1,

insert

v

Journal of Mathematical Cryptology, Vol. 11, No. 1, pp. 1—24 (2015).

19

DeepBKZ (4/6):

Properties of Reduction = ®RIKKYO UNIVERSITY

B = (b4, ..., b,): DeepBKZ-reduced
@ 6-DeeplLL-reduced (1/4<6<1)

Size-reduced
S|Ibi 1% < |l (by)||? forall i < k

@ B-BKZ-reduced (2=B=n)
Ib; || = A,(m; (L)) forall1 <i<n
(mr; 1s the orthogonal projection)

* Then we have

5111112 < [bgas]|” < []I” + 42”

j=1
j> (5__) Ibsl2 z I;1°
||bﬁ+1|| ||bﬁ+1||

where Cp = maxzﬁ_ L ”2 over all HKZ-reduced (b4, ...

b

,bg)

20

DeepBKZ (5/6):

Provable Output Quality ®RIKKYO UNIVERSITY

* LemmalYNY20]
— Every DeepBKZ-reduced basis B = (b4, ..., b,,) satisfies

2 C Pt Y
|||b1||”2Sa(1+_ﬁ){1+a(ﬁ)}
b*

B+1
16+ >

fori = 1, where =46—_1>;l
e TheoremlYNY20]
— B = (b4, ...,b,): (6, B)-DeepBKZ-reduced basis of L

— Assume n is divisible by f withp = Z—Z 2

— Then we have

B(p-1) Bl-1)(-2)
b || z _{ (1 2 CB)} 2n = a(l + Cﬁ) 4n
vol(L)i7n = V6@ 4 4

where yg is Hermite’s constant of dimension [3

[YNY20] M. Yasuda, S. Nakamura and J. Yamaguchi, Analysis of DeepBKZ reduction for finding short lattice vectors,

Design, Codes and Cryptography, Vol. 88, No. 19, pp. 2077—2100 (2020).

21

DeepBKZ (6/6) :
Practical Output Quality ®RIKKYO UNIVERSITY

10115

1011
10105
4
0
T 101
8
@
=
[e . E X R R N
B ' LT
I o0
+« 10085 .”".l.boooo
8 S000000NGRRRRRRRRORRRRRRSS TR YY) °
=
(A XX
1009 eeodd88888828828S
C00000COOROROOOROROORRORRORTRDS
150 - . - __—=——————— . Y ¥ EFFFFFFEETFFE Y YN R R TN
1008
0 10 20 30 40 50 60 70 80

Blocksizes

Fig. 1 The root Hermite factor of DeepBKZ with blocksizes 2 < g < 80 for the SVP
challenge in dimension n = 115 with seeds 0-9 (Each dot denotes the root Hermite factor
for some seed, and the polygonal line denotes the average.)

22

New SVP Solutions
by (Parallel) DeepB

& RIKKYO UNIVERSITY

 DeepBKZ found many new
solutions for the SVP challenge

— In most dimensions up ton =128

— We used blocksizes B = 30--45

— Qur solutions are the shortest or
very close to it

* Since their approximation factors are
close to 1.0 (0.98470 for n = 128)

— Forn =128, it took about 57.5

hours by massive parallel
computation using 24,576 cores

67

68

69

70

y5 1

72

73

74

75

76

774

78

79

80

81

82

83

84

85

86

87

88

89

90

91

SVP Challenge (latticechallenge.org)

130

129

129

129

129

128

128

128

128

128

128

127

127.

127

127

126

126

126

126

126

126

125

125

125

125

3025

2818

2855

2875

2988

2812

2882

2948

2974

2984

2992

2790

2890

2898

2932

2812

2855

2897

2906

2944

2969

2806

2834

2907

2922

Kenjl Kashiwabara and Masaharu
Fukase

Yuga Miyagi and Eiichiro Fujisaki
Yuga Miyagi, Tomohiro Sekiguchi,
Eiichiro Fujisaki
Martin Albrecht, Leo Ducas, Gottfried

Herold, Elena Kirshanova, Eamonn
Postlethwaite, Marc Stevens

Martin R. Albrecht, Leo Ducas,
Gottfried Herold, Elena Kirshanova,
Eamonn Postlethwaite and Marc Ste

N. Tateiwa, Y. Shinano, K. Yamamura,
A. Yoshida, S. Kaji, M. Yasuda, K.
Fujisawa
Kenji KASHIWABARA and Tadanori
TERUYA

Kenji KASHIWABARA and Tadanori
TERUYA

Kenji KASHIWABARA and Tadanori
TERUYA

Kenji Kashiwabara and Masaharu
fukase

Kenji Kashiwabara and Masaharu
Fukase

N. Tateiwa, Y. Shinano, A. Yoshida, S.
Nakamura, S. Kaji, M. Yasuda, Y.
Aono, K. Fujisawa

Yuga Miyagi and Eiichiro Fujisaki
Yuga Miyagi, Tomohiro Sekiguchi,
Eiichiro Fujisaki
Junpei Yamaguchi, Masaya Yasuda
and Takuya Hayashi

Tadanori TERUYA

Yoshinori Aono and Phong Nguyen

Kenji KASHIWABARA and Tadanori
TERUYA

Yoshinori Aono

Kenji Kashiwabara and Masaharu
Fukase

Yuanmi Chen and Phong Nguyen
Jim Johnson

Tadanori TERUYA

Junpei Yamaguchi, Masaya Yasuda
and Takuya Hayashi

Junpei Yamaguchi, Masaya Yasuda
and Takuya Hayashi

Other

Sieving

Sieving

Sieving

Sieving

BKZ

Other
Other
Other
Other

Other

ENUM,BKZ,Other

Sieving
Sieving
Other
Sieving,Other
ENUM,BKZ
Other
ENUM,BKZ
Other
ENUM,BKZ
Sieving
Sieving,Other
Other

ENUM,Other

2013-
11-15
2019-
04-11
2019-
03-26

2018-
08-30

2018-
08-30

2021-
10-16
2018-
07-9
2018-
06-20
2018-
05-9
2013-
09-23
2013-
09-19

2020-
06-7
2019-
04-11
2019-
03-25
2018-
01-12
2019-
04-2
2014-
09-9
2014-
08-27
2014-
07-14
2013-
09-4
2013-
04-12
2021-
10-22
2019-
04-2
2017-
11-20
2017-
10-15

23

1.04787

0.98161

0.99172

0.99878

1.03813

0.98470

1.00477

1.02755

1.03665

1.04017

1.04313

0.97573

1.01429

1.01626

1.02804

0.99052

1.00556

1.02051

1.02357

1.03679

1.04356

0.99077

1.00341

1.02649

1.03203

https://www.latticechallenge.org/svp-challenge/halloffame.php

Massive Parallelization
of DeepBKZ (1/8) & RIKKYO UNIVERSITY

e Parallel sharing DeepBKZ
— Distributed and asynchronous system using randomization and DeepBKZ
— Using CMAP-LAPITS*211 3 general framework for lattice algorithms

Supervisor
r (; : : ~— Solver Pool
(1) inpUIt t;a?i;ar?d l ' 5 +=======================
setgo al basis r“:““:
I :
(5) Update global basis or Supervisor-Solvers Style
send global basis (6) Update (Do
Status of Task task * Every solver runs DeepBKZ on a
m [Status randomized basis independently
— e Supervisor collects short basis vectors from
—Solver A+ B 'SO'VerE_ solvers, and distributes them to solvers
. » Every solver uses distributed vectors to
i — accelerate its reduction process
|Status) : 8
| Basis | (See [TS+20] for sharing a shortest basis vector)
(3) Run reduction algoriithm from Task
(4) Send status, and receive
global sub-basisperiodically

[TS+20] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, Massive Parallelization for Finding Shortest Lattice

Vectors Based on Ubiquity General Framework, High Performance Computing, Networking, Storage, and Analysis (SC 20).
[TS+21] N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, CMAP-LAP: Configurable Massively Parallel Solver for 24

Lattice Problems, High Performance Computing, Data, and Analytics (HiPC 2021).

Massive Parallelization
of DeepBKZ (2/8)

» Efficacy of parallel sharing DeepBKZ

— Sharing k = 16 short basis vectors among solvers for dimension d = 120

& RIKKYO UNIVERSITY

Root Hermite factor log(enumeration cost) - GSA slope
1.01000 66.0 1 0.070
|
1.00975 - 65.5 1 l{
| 0.068 1 |
1.009501 650
64.5 1
1.00925 1 0.066 - .
64.0 - W\
1.00900 ' 1
63.5 1 ey VAT l
1.00875 asisi
63.01 ik,
1.00850- ' ‘
62.5 1 0.062 1) () i'“
1.00825 1 62.0 -
1-00800 T T T Y T 615 v T Y T ’ T 0.060 T Y T T T
00 25 50 75 10.0 00 25 50 75 100 00 25 50 75 100
Time [h] Time [h] Time [h]
—— #procecses =40 —— #procecses = 180 ——— #procecses = 24576
#procecses = 80 —— #procecses = 2304

Fig. 11 Same as Figure 7, but the dimension is d = 120 and lines in each metric represent
difference by different numbers of processes (We used k = 16 as the number of shares) 95

Massive Parallelization
of DeepBKZ (3/8)

& RIKKYO UNIVERSITY

e OQOutput quality of parallel sharing DeepBKZ

— For an output basis B = (b4, ...,
by

GH(m; (L))

— @Gaps

are shown in the below Figure

b.,,) of parallel sharing DeepBKZ,

= First k = 16 basis vectors are close to the shortest in projected lattices

201 ., #Processes = 180

#Processes = 2304

@

1.8 - :

+ #Processes = 24576 ‘
1.6 ++
1.4 +

¥
1.2 ' '-f-'t ‘N—‘- x Q*rq- Lt ot 4’:*-:-
o’ 0'. o .tk‘ +§ s t-b 3—%—}‘*’0“ tw_.*’*
1.0 M% -l-F"+ i i Tonrdae® Hragy ot il et
. T TPl "
0 20 40 60 80 100 120
Index

Massive Parallelization
of DeepBKZ (4/8) ® RIKKYO UNIVERSITY

e Similarity of lattice bases

— Our parallel system is based on randomness of lattice bases

— But we have a trade-off between randomness and shared information
 Measurement of similarity based on Grassmann metrics

— Given a multiset B = {B4, ..., B,;} of lattice bases in dimension d

— The total projected diversity is defined as DiV(B, dg) = Cl? flzl Divi(B, dg)

. Divi(B, dg) = dg (Yi(Bj), Yi(Bk)): the i-th projected diversity

REL y
#P(B) “~(B;,Bx)EP(B)

; b; b’ ! ;
— YY([by, ...,by]D) = | 22, ..., —2-): normalized Gram-Schmidt vectors
(LY R

* dg: Grassmann metric (equipped for the Grassmannian manifold Gr(k,n))
— Gr(k,n) consists of k-dimensional linear subspaces in R"
» Every subspace is considered as a point in Gr(k,n)
— dg measures a distance between two points (=subspaces) in Gr(k, n)

» E.g., geodesic, chordal, projection 2-norm distances 27

Massive Parallelization
of DeepBKZ (5/8) & RIKKYO UNIVERSITY

* Experiments for the diversity of bases in our parallel system

— The number of shares k=16 does not lose the diversity significantly for d=90

— In contrast, k=32 loses the diversity gradually in reduction process

geodesic chordal s geodesic chordal
45 3.5
4.01 3.0
3.5
2.5
3.0
55 | 2.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Tour Tour
projection 2-norm
1.0 1
104 :w::f::::wwiﬁw—-q. + k=0 ¢ k=0
" xi I I I « -
0.8 : : r: . wl ‘:*i 4 X k=1 0.94 k_l
el A LT ¢ Lt o W
| | | *4 | |
L= ! . k=16 08 . k=16
i1 e I | X _ + k=32
0.4 441 {rj ; ! k=32 071 -
02 i v | <« k=64 « k=64
Tt | e (=80 =20
0.0 p 1 i 1

45 60 75 90 0 25 50 75 100 125 150 175 200
Tour

Index

—
—
w
w
=3

Fig. 3 Transition of the total diversity Div(B, dg) computed for 90-dimensional lattice bases

Fig. 2 The average of the i-th projected diversity Div* (3, dg) computed for 90-dimensional
with different numbers of shared vectors k after each tour of DeepBKZ.

lattice bases with different numbers of shared vectors k right after 100 DeepBKZ tours.)

[TS+21] N. Tateiwa, Y. Shinano, M. Yasuda, S. Kaji, K. Yamamura and K. Fujisawa, “Massively parallel sharing lattice basis reduction”, 28
ZIB-Report 21-38, available at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docld/8520

https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/8520

Massive Parallelization
of DeepBKZ (6/8)

& RIKKYO UNIVERSITY

e Large-scale experiments

— A very short lattice vector in a lattice
of dimension around d = 130 can be

found within 100 hours on

supercomputers

Table 1 Computing platforms, operating systems, compilers and libraries

Memory CPU CPU
/ node frequency
Lisa 384 GB Xeon Platinum 9242 2.30 GHz 1,080 103,680

Machine # nodes # cores

Emmy 384 GB Xeon Platinum 9242 2.30 GHz 128 12,288
ITO 192 GB Xeon Gold 6154 3.00 GHz 128 4,608
CAL A 256 GB Xeon CPU E5-2640 v3 2.60 GHz 4 64
256 GB Xeon CPU E5-2650 v3 2.30 GHz 4 80
CALC 32 GB Xeon CPU E3-1284L v3 1.80 GHz 45 180

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO

e \Without using the sub-sieve strategy [Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux
— Small blocksizes B = 30—40 are

enough for parallel sharing DeepBKZ

release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO
[icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304,
impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS
v0.3.7, fplll v5.2.1.

Table 5 Large-scale experimental results of CMAP-DeepBKZ for SVP instances in dimen-
sions d = 128, 130 and 132 (b; denotes a shortest basis vector of all solver’s bases, and
“Updated time” is wall time to update final shortest vectors found)

SVP Instance # of Updated Norm Approx. Root Hermite | Machine*
Dim. Seed cores* time [h] of by factor % factor y1/d (Table 1)
128 17 24,576 57.5 2812.00 0.98470 1.00796 Emmy

2 24,576 37.1 2947,45 1.02808 1.00830 Emmy

) _1;0_ = e 1_()3_,6_8()_ [81.1 2968.73 1.03001 ~ 1.00825 | Lisa
7 103,680 39.4 2914.22 1.01236 1.00811 Lisa

) _1;2_ 1 24576 | 346 2968.05 1.02260 @ 1.00812 | Emmy
2 24,576 56.5 2899.90 0.99662 1.00818 Emmy

T a new solution for the Darmstadt SVP challenge [26] in dimension 128 (see also Table 6
for other dimensions). * We list the maximum number of cores and machines used for
executions, including restarts, and the wall time for the updated time.

29

Massive Parallelization
of DeepBKZ (7/8) ® RIKKYO UNIVERSITY

 Comparison with perfect parallelization (ideal model)
— [ABF+20] proposed a variant of enumeration-based BKZ with several improvements

— It estimated the cost of enumeration-based SVP solving (without parallelization)

— We compare running times of our parallel system with perfect parallelization of [ABF+20]
* Incase of using p = 24,576, our system is about 10 times slower than an ideal model for d = 128, 132
* In case of using p = 103,680, our system is much slower for d = 130 (ours could be considerably improved)

urs)

running times (ho

logarithm of

aimensions

[ABF+20] Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehle, D., Wen, W.: Faster enumeration-based lattice reduction: Root Hermite factor 30
k~{1/(2k)} time k2 {k/8+0(k)}. In: Advances in Cryptology—CRYPTO 2020, Lecture Notes in Computer Science, vol. 12171, pp. 186-212.

Massive Parallelization
of DeepBKZ (8/8) ® RIKKYO UNIVERSITY

e Future Work: Use of our CMAP-LAP framework(T5+21]

— Supervisor-Worker parallelization type

— Execution of heterogeneous algorithms (Reduction, ENUM, Sieve)
— Acceleration by asynchronously sharing lattice vectors via vector pool

= We will embed optimal algorithms (e.g., pruned ENUM, sieve) in our
framework for solving lattice problems of higher dimensions

— Solver A
Reduction [Reduction }
Algorithm
o — /[\
— LoadCoordinator < \ i J 2% 2
s
) — Solver B w v P |
Basis Pool A)
Enumeration Enumeration Sieve
Algorithm -
/< 1 <
Vi 7 —) |
{] - J - —_
SoIverC 2 _ FehBThadt
Si reduced basis short vectors CUITE€NTSNOIES
Vector Pool leve vector found
T
111 %

