® RIKKYO UNIVERSITY

研究集会 「量子暗号理論と耐量子暗号」 早稲田大学 (Zoomによるオンライン開催)

最短ベクトル問題を解くための 格子基底簡約とその大規模並列化 2022年3月18日(金) 11:00~12:00 安田雅哉(立教大学)

Basics on Lattices

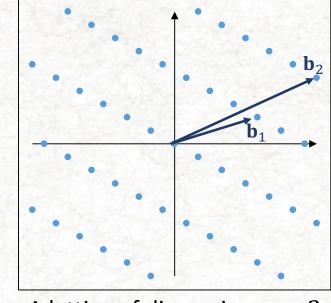
RIKKYO UNIVERSITY

For linearly independent $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{Z}^n$,

 $L = \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n) := \left\{ \sum_{i=1}^n x_i \mathbf{\tilde{b}}_i \mid x_i \in \mathbb{Z} \right\}$

Integral combination

- is a (full-rank) lattice of dimension n
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: a **basis** of *L*
 - Regard it as the $n \times n$ matrix
- Infinitely many bases if $n \ge 2$
 - If **B**₁ and **B**₂ span the same lattice,
 - then $\exists \mathbf{V} \in \operatorname{GL}_n(\mathbb{Z})$ such that $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{V}$
- $\operatorname{vol}(L) = |\operatorname{det}(\mathbf{B})| : \text{ the volume of } L$
 - Independent of the choice of bases



A lattice of dimension n = 2

Lattices in Cryptography INIVERSITY

- Post-Quantum Cryptography (PQC) Standardization
 - Since 2015, National Institute of Standards and Technology (NIST) has proceeded a standardization project for PQC
 - To standardize quantum-resistant public-key cryptographic algorithms
 - <u>Post-Quantum Cryptography</u> | <u>CSRC (nist.gov)</u>
 - In July 2020, NIST selected 7 Finalists and 8 Alternates
 - 7 lattice-based schemes are now in evaluation at the 3rd round
 - 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)

	Signa	tures	KEM/En	cryption	Ove	erall	Cale 3		Finalists	Alternates	
	Rd 1	Rd 2	Rd 1	Rd 2	Rd 1	Rd 2		KEMs/Encryption	Kyber NTRU SABER Classic McEliece	Bike FrodoKEM	
Lattice-based	5	3	21	9	26	12	1			HQC NTRUprime	
Code-based	2		17	7	19	7				SIKE	
Multi-variate	7	4	2		9	4		Signatures	Dilithium	GeMSS	
Hash/Symmetric	3	2			3	2		Signatures	Falcon Rainbow	Picnic SPHINCS+	
Other	2		5	1	7	1					
Total	19	10	45	16	64	26		INIST SLALUS	<u>Opuale on the 3rd Kt</u>	ound (PDF) 3	

- 2 Alternates (FrodoKEM, NTRUprime)

Lattice Problems

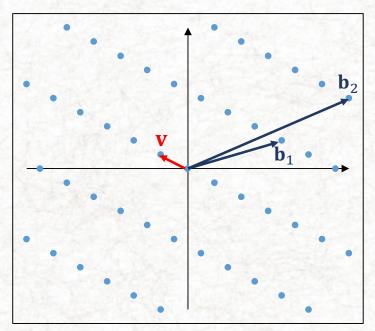
® RIKKYO UNIVERSITY

Algorithmic problems for lattices

- SVP (Shortest Vector Problem) Our focus
 - Given a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L
 - Find a non-zero shortest vector in L
- CVP (Closest Vector Problem)
- LWE (Learning with Errors)
- NTRU, etc.

Relationship with cryptography

- The security of lattice-based cryptography is based on the hardness of lattice problems
- In particular, the hardness of SVP and CVP supports the security of most schemes



SVP in a two-dimensional lattice

- Given linearly independent **b**₁, **b**₂
- Find a non-zero shortest vector

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2$ for some $a_1, a_2 \in \mathbb{Z}$

Known Results for $\lambda_1(L)$ **RIKKYO UNIVERSITY**

• The first successive minimum

- Define $\lambda_1(L)$ as the length of a non-zero shortest vector in a lattice L
- SVP is the problem that finds $\mathbf{s} \in L$ such that $||\mathbf{s}|| = \lambda_1(L)$

Theoretical results

Minkowski's convex body theorem implies

$$\lambda_1(L) \le 2\omega_n^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}}$$

for any lattice L of dimension n (ω_n : the volume of the unit ball in \mathbb{R}^n)

Heuristic results

The Gaussian Heuristic implies

$$\lambda_1(L) \approx \omega_n^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \sim \sqrt{n/2\pi e} \operatorname{vol}(L)^{\frac{1}{n}} =: \operatorname{GH}(L)$$

- The Gaussian Heuristic: The number of vectors in L ∩ S is roughly equal to vol(S)/vol(L) for a measurable set S in ℝⁿ
- It holds in practice for "random" lattices in high dimensions $n \ge 50$

SVP Challenge

RIKKYO UNIVERSITY

The Darmstadt SVP challenge

- Sample bases $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ are presented for dimensions $40 \le n \le 198$
- Any vector $\mathbf{v} \in L = \mathcal{L}(\mathbf{B})$ of length $\|\mathbf{v}\| < 1.05 \text{GH}(L) \approx 1.05 \lambda_1(L)$ can be submitted to the hall of fame
 - That is, approximate SVP with factor 1.05
- The current highest dimension to be solved is n = 180 (141.pdf (iacr.org))
 - It took about 51.6 days on a server with 4 NVIDIA Turing GPUs with 1.5 TB RAM
 - But the record must be not the shortest (since its approximation factor is about 1.04)

SVP	CHALLE	NGE				
INTRO	DUCTIO	N				SUBMISSION
problem (algorithms enumerati Mayer.	SVP) in euclid s, and serve on. The lattic	lean lattices. ⁻ es to compan es presented l	The SVP re diffe	ing algorithms that solve the short challenge helps assessing the strem- rent types of algorithms, like sid random lattices in the sense of Gol	gth of SVP eving and	Submission DOWNLOAD Generate online Generator
PARTI	CIPATIO	N				Format of challenges
You can el downlo use the downlo NTL 9 challen How to e To enter t Higher (which A short Acknowle Special th pseudorary	ad a sample la generator on a d the generat 4 and later vi- ges on your lo nter the Hall ne hall of fame dimension and is an estimati er vector than edgment: anks to Yunta- dom generat	tor and instal ersions use a ccal machine. of Fame: e, you have to d Euclidean no $1.05 \cdot \frac{1}{-1}$ on of the leng on a previous or o Wang and Ju or and to Yur	e a lattic l it with differer submit orm less $C(n/2 + \sqrt{2})$ th of a s ne in the	e with (integer) seeds of your choice an NTL older than NTL 9.4 (neces it pseudorandom number generator) a vector with	sary since to create rent seed) in the NTL	Download example lattices (generated with seed=0) 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198
Position	Dimension	Euclidean	Seed	Contestant	Solution	LINKS
1	180	norm 3509	0	L. Ducas, M. Stevens, W. van	vec	Visual Hall of Fame
2	178	3447	0	Woerden L. Ducas, M. Stevens, W. van	vec	Latticechallenge
3	176	3487	0	Woerden L. Ducas, M. Stevens, W. van Woerden	vec	Ideal Lattice Challenge
4	170	3438	0	woerden L. Ducas, M. Stevens, W. van Woerden	vec	
5	158	3240	0	Sho Hasegawa, Yuntao Wang, Eiichiro Fujisaki	vec	CONTACT
				i ujisuki		

SVP Challenge (latticechallenge.org) 6

Lattice Basis Reduction

RIKKYO UNIVERSITY

 \mathbf{b}_1

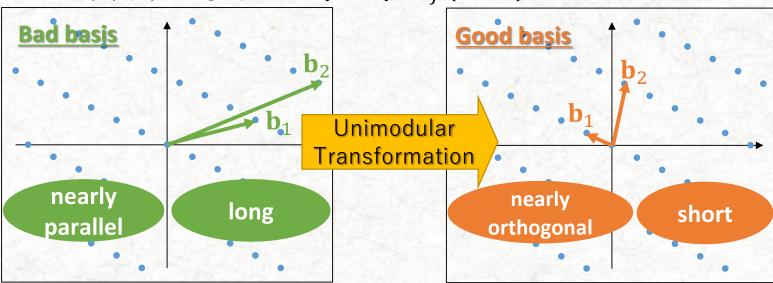
 \mathbf{b}_2

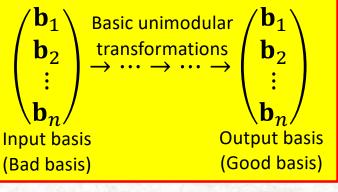
 \mathbf{b}_n

Strong tool for solving lattice problems including SVP •

- Find a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ with short and nearly orthogonal vectors
 - Such a basis is called "good" or "reduced"
 - Some basis vectors **b**_i's are very short
- Consist of basic unimodular transformations
 - Multiply by (-1): $\mathbf{b}_i \leftarrow -\mathbf{b}_i$ (1)
 - 2 Swap \mathbf{b}_i and \mathbf{b}_j

3 Multiply (by integer)-Add: $\mathbf{b}_i \leftarrow \mathbf{b}_i + a\mathbf{b}_i \ (a \in \mathbb{Z})$





LLL (1/3): Definition and Properties **RIKKYO UNIVERSITY**

- Lenstra-Lenstra-Lovász (LLL)-reduction [LLL82]
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is **\delta-LLL-reduced** if it satisfies two conditions
 - **(1)** Size-reduced: $|\mu_{ij}| \le \frac{1}{2}$ for all $1 \le j < i \le n$
 - **2** Lovász' condition: $\|\mathbf{b}_k^*\|^2 \ge (\delta \mu_{k,k-1}^2) \|\mathbf{b}_{k-1}^*\|^2$
 - $\frac{1}{4} < \delta < 1$: reduction parameter (e.g., $\delta = 0.99$ for practice)

-
$$\mathbf{B}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*), \mu = (\mu_{ij})$$
: Gram-Schmidt information of **B**:

$$\mathbf{b}_{1}^{*} = \mathbf{b}_{1}, \ \mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} \mathbf{b}_{j}^{*}, \ \mu_{ij} = \frac{\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \rangle}{\left\| \mathbf{b}_{j}^{*} \right\|^{2}}$$

- Every LLL-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies
 - $\|\mathbf{b}_1\| \le \alpha^{\frac{n-1}{2}} \lambda_1(L)$, where $\alpha = \frac{4}{4\delta 1} > \frac{4}{3}$
 - $\|\mathbf{b}_1\| \leq \alpha^{\frac{n-1}{4}} \operatorname{vol}(L)^{\frac{1}{n}}$

[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovász, "Factoring polynomials with rational coefficients", Mathematische Annalen 261 (4): 515–534 (1982).

LLL (2/3): Basic Algorithm

RIKKYO UNIVERSITY

It consists of two procedures to find an LLL-reduced basis

- **1** Size-reduction: $\mathbf{b}_k \leftarrow \mathbf{b}_k q\mathbf{b}_j$ with $q = \lfloor \mu_{k,j} \rfloor$
- 2 Swap adjacent vectors: $\mathbf{b}_{k-1} \leftrightarrow \mathbf{b}_k$ if they do not satisfy Lovász' condition

Algorithm: The basic LLL Lenstra et al. (1982)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice *L*, and a reduction parameter $\frac{1}{4} < \delta < 1$ **Output:** A δ -LLL-reduced basis **B** of *L*

1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of the input basis **B** 2: $k \leftarrow 2$

3: while $k \leq n$ do

 $(1) \begin{cases} 4: & \text{Size-reduce } \mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \text{ // At each } k, \text{ we recursively change } \mathbf{b}_k \leftarrow \mathbf{b}_k - \\ & \lfloor \mu_{k,j} \rceil \mathbf{b}_j \text{ for } 1 \leq j \leq k-1 \text{ (e.g., see Galbraith 2012, Algorithm 24)} \end{cases}$

5: **if** $(\mathbf{b}_{k-1}, \mathbf{b}_k)$ satisfies Lovász' condition **then**

$$6: \quad k \leftarrow k+1$$

(2) 8: Swap \mathbf{b}_k with \mathbf{b}_{k-1} , and update Gram–Schmidt information of **B**

9:
$$k \leftarrow \max(k-1,2)$$

10: end if

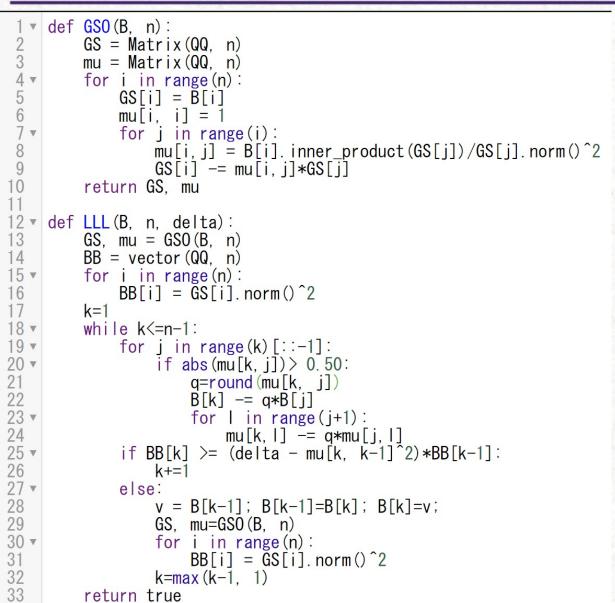
11: end while

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

LLL (3/3): Sage Code

RIKKYO UNIVERSITY

34



-		
35	n = 10; d = 100000	
36	B = Matrix(ZZ, n)	
37 •	for i in range(0, n):	
38	B[i, i] = 1	
39	B[i, 0] = randint(-d,	d)
40	print("Input basis")	
41	show(B)	
42	LLL (B, n, 0.99)	
43	<pre>print("¥nOutput basis")</pre>	
44	show(B)	
4		

Please use <u>Sage Cell Server</u> (sagemath.org)

Enumeration (1/3): Basic Idea

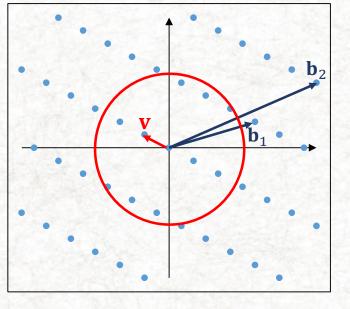
® RIKKYO UNIVERSITY

- Enumerate all vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in \mathcal{L}(\mathbf{B})$ such that $||\mathbf{s}|| \le R$
 - -R > 0: search radius (e.g., R = 1.05GH(L))
 - With Gram-Schmidt information, write

$$\mathbf{s} = \sum_{j=1}^{n} \left(\nu_j + \sum_{i=j+1}^{n} \mu_{ij} \nu_i \right) \mathbf{b}_j^*$$

By the orthogonality of Gram-Schmidt vectors,

$$\|\pi_k(\mathbf{s})\|^2 = \sum_{j=k}^n \left(v_j + \sum_{i=j+1}^n \mu_{ij} v_i \right)^2 \|\mathbf{b}_j^*\|^2$$



for $1 \le k \le n$, where π_k denotes the projection map to $\langle \mathbf{b}_k^*, ..., \mathbf{b}_n^* \rangle_{\mathbb{R}}$ - Consider *n* inequalities $\|\pi_k(\mathbf{s})\|^2 \le R^2$ for $1 \le k \le n$:

$$\begin{cases} v_n^2 \leq \frac{R^2}{\|\mathbf{b}_n^*\|^2} \\ \left(v_{n-1} + \mu_{n,n-1}v_n\right)^2 \leq \frac{R^2 - v_n^2 \|\mathbf{b}_n^*\|^2}{\|\mathbf{b}_{n-1}^*\|^2} \end{cases}$$

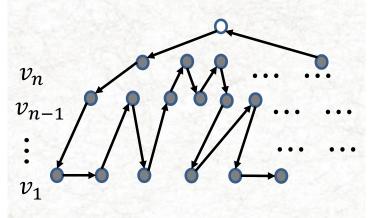
Enumeration (2/3): Basic Algorithm

® RIKKYO UNIVERSITY

Algorithm: The basic Schnorr–Euchner enumeration Schnorr and Euchner (1994)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L and a radius R with $\lambda_1(L) \leq R$ **Output:** The shortest non-zero vector $\mathbf{s} = \sum_{i=1}^{n} v_i \mathbf{b}_i$ in L 1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of **B** 2: $(\rho_1, \ldots, \rho_{n+1}) = \mathbf{0}, (v_1, \ldots, v_n) = (1, 0, \ldots, 0), (c_1, \ldots, c_n) = \mathbf{0}, (w_1, \ldots, w_n) =$ 0 3: k = 1, last_nonzero = 1 // largest *i* for which $v_i \neq 0$ 4: while true do $\rho_k \leftarrow \rho_{k+1} + (v_k - c_k)^2 \cdot \|\mathbf{b}_k^*\|^2 // \rho_k = \|\pi_k(\mathbf{s})\|^2$ 5: if $\rho_k \leq R^2$ then 6: if k = 1 then $R^2 \leftarrow \rho_k$, $\mathbf{s} \leftarrow \sum_{i=1}^n v_i \mathbf{b}_i$; // update the squared radius 7: else $k \leftarrow k-1, c_k \leftarrow -\sum_{i=k+1}^n \mu_{i,k} v_i, v_k \leftarrow \lfloor c_k \rceil, w_k \leftarrow 1;$ 8: 9: else 10: $k \leftarrow k + 1$ // going up the tree if k = n + 1 then return s: 11: if $k \geq last_nonzero$ then $last_nonzero \leftarrow k, v_k \leftarrow v_k + 1$; 12: else 13: if $v_k > c_k$ then $v_k \leftarrow v_k - w_k$; else $v_k \leftarrow v_k + w_k$; // zig-zag search 14: $w_k \leftarrow w_k + 1$ 15: end if 16: end if 17: 18: end while

- Enumerate lattice vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in L$ such that $\|\mathbf{s}\| \leq R$
- Built an enumeration tree to find integral combinations (v₁, ..., v_n)



Enumeration (3/3): Sage Code

® RIKKYO UNIVERSITY

```
v def GSO(B, n):
GS = Matrix(QQ, n)
          mu = Matrix(QQ, n)
 4 -
          for i in range(n):
 5
                GS[i] = B[i]
 6
               mu[i, i] = 1
 7 -
                for j in range(i):
 8
                    mu[i, j] = B[i].inner_product(GS[j])/GS[j].norm()^2
 9
                     GS[i] -= mu[i, j]*GS[j]
10
          return GS. mu
11
12 v def ENUM(B, n, R):
          GS, mu = GSO(B, n)
13
14
           BB = vector(QQ, n)
          for i in range(n):
    BB[i] = GS[i].norm()^2
15 •
16
          sigma = Matrix(QQ, n+1, n)
17
18
          r = vector(ZZ, n+1)
          \begin{array}{l} rho = vector(2Z, n+1) \\ v = vector(ZZ, n) \\ c = vector(QQ, n) \\ w = vector(ZZ, n) \end{array} 
19
20
21
22
23
24
25
          for i in range(n+1):
                r[i] = i
          v[0] = 1
26
           last nonzero = 1
27
          k = 1
28 -
           while (1):
29
30 •
                rho[k-1] = rho[k] + (v[k-1] - c[k-1])^{2*BB[k-1]}
                if \overline{RR}(rho[k-1]) \leq RR(\overline{R}):
31 -
                     if k==1:
32
33
34
35 •
                          print("Solution found"); return v
                     k = k - 1
                    r[k-1] = max(r[k-1], r[k])
                    for i in range(k+1, r[k]+1)[::-1]:
sigma[i-1, k-1] = sigma[i, k-1] + mu[i-1, k-1]*v[i-1]
36
37
                     c[k-1] = -sigma[k, k-1]
38
39
                     v[k-1] = round(c[k-1])
                     w[k-1] = 1
40 -
                else
41
                     k = k+1
42 •
                     if k==n+1:
43
                         print("No solution"); return false
44
                     r[k-1] = k
45 -
                     if k>=last nonzero:
46
                          last_nonzero = k
47
                          v[k-1] = v[k-1] + 1
48 -
                     else
49 -
                          if RR(v[k-1]) > RR(c[k-1]):
50
                               v[k-1] = v[k-1] - w[k-1]
51 -
                          else:
52
                               v[k-1] = v[k-1] + w[k-1]
53
                          w[k-1] = w[k-1] + 1
```

```
55
    #Main
56
    n = 20
57
     B = random_matrix(ZZ, n, x=0, y = 30)
58
     B. LLL ()
    print ("LLL-reduced basis =¥n", B)
59
    R = 0.99 * RR(B[0].norm()^2)
60
    while (1):
61
62
         v = vector(ZZ, n)
63
         v = ENUM(B, n, R)
64 -
         if v != false:
65
              vec = v[0] * B[0]
66 •
              for i in range(1, n):
67
                  vec += v[i]*B[i]
              R = 0.99 * RR (vec. norm()^2)
68
              print("Norm=", RR(vec.norm()), ", Vector=", vec)
69
70 •
         e se:
71
              break
72
     print ("End")
```

BKZ (1/3): Definition and Properties RIKKYO UNIVERSITY

- Block Korkine-Zolotarev (BKZ)-reduction
 - A blockwise generalization of LLL with blocksize β
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is β -BKZ-reduced if it satisfies two conditions
 - 1 It is size-reduced (same as LLL)
 - 2 The k-th Gram-Schmidt vector \mathbf{b}_k^* is shortest in $L_{[k, \ell]}$ with $\ell =$
 - $\begin{array}{ll} \min(k+\beta-1, n) \text{ for all } 1 \leq k < n \\ L_{[1,\beta]}: \mathbf{b}_1 \cdots \cdots \mathbf{b}_{\beta} \\ L_{[2,\beta+1]}: \pi_2(\mathbf{b}_2) \cdots \cdots \pi_2(\mathbf{b}_{\beta+1}) \\ \vdots & \ddots & \ddots \\ L_{[n-\beta+1,n]}: & \pi_{n-\beta+1}(\mathbf{b}_{n-\beta+1}) \cdots \cdots \pi_{n-\beta+1}(\mathbf{b}_n) \end{array}$
 - Every β -BKZ-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies $\|\mathbf{b}_1\| \le \gamma_{\beta}^{\frac{n-1}{\beta-1}} \lambda_1(L)$

• γ_{β} : Hermite's constant of dimension β , i.e., $\gamma_{\beta} = \sup_{L} \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$

As β increases, $\gamma_{\beta}^{1/(\beta-1)}$ decreases and thus \mathbf{b}_1 can be shorter

BKZ (2/3): Basic Algorithm

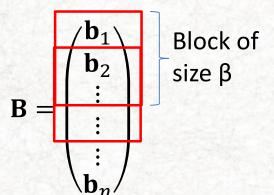
• It consists of LLL and ENUM:

- Call ENUM to find a non-zero shortest vector in $L_{[k, \ell]}$
- Call LLL to reduce a projected block basis of $L_{[k, \ell]}$

Algorithm: The basic BKZ Schnorr and Euchner (1994)

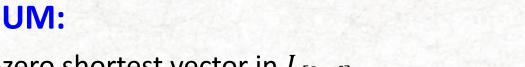
Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L, a blocksize $2 \le \beta \le n$, and a reduction parameter $\frac{1}{4} < \delta < 1$ of LLL Output: A β -DeepBKZ-reduced basis \mathbf{B} of L1: $\mathbf{B} \leftarrow \text{LLL}(\mathbf{B}, \delta)$ // Compute $\mu_{i,j}$ and $\|\mathbf{b}_j^*\|^2$ of the new basis \mathbf{B} together 2: $z \leftarrow 0, j \leftarrow 0$ 3: while z < n - 1 do 4: $j \leftarrow (j \mod (n - 1)) + 1, k \leftarrow \min(j + \beta - 1, n), h \leftarrow \min(k + 1, n)$ 5: Find $\mathbf{v} \in L$ such that $\|\pi_j(\mathbf{v})\| = \lambda_1(L_{[j,k]})$ by enumeration or sieve 6: if $\|\pi_j(\mathbf{v})\|^2 < \|\mathbf{b}_j^*\|^2$ then 7: $z \leftarrow 0$ and call LLL($(\mathbf{b}_1, \dots, \mathbf{b}_{j-1}, \mathbf{v}, \mathbf{b}_j, \dots, \mathbf{b}_h), \delta$) // Insert $\mathbf{v} \in L$ and remove the linear dependency to obtain a new basis 8: else

- 9: $z \leftarrow z + 1$ and call LLL($(\mathbf{b}_1, \dots, \mathbf{b}_h), \delta$)
- 10: end if
- 11: end while



RIKKYO UNIVERSITY

As reference,
please look at
BKZ-60 – YouTube
by Martin Albrecht



A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

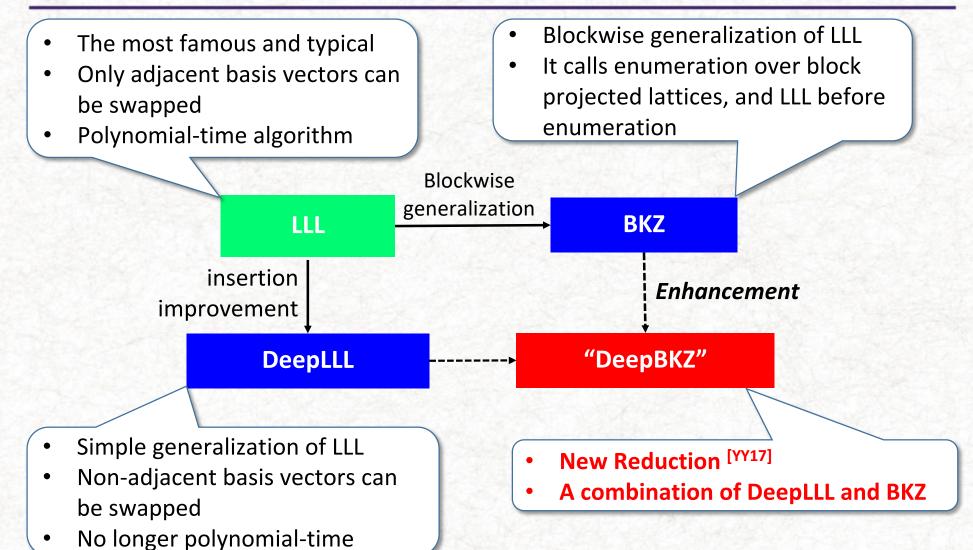
BKZ (3/3): Sage Code

® RIKKYO UNIVERSITY

1.0		200	677	
	def ENUM(B, n, R, g, h):		67	def BKZ(B, n, block):
13	BB, U = GSO(B, n)		68	B.LLL()
14	Bnn = vector(QQ, n)		69	BB, $U = GSO(B, n)$
15	for i in range(n):		70	Bnn = vector(QQ, n)
16	$Bnn[i] = BB[i].norm()^2$		71	for i in range(n):
17	BB, $U = GSO(B, n)$		72	$Bnn[i] = BB[i].norm()^2$
18	sigma = Matrix(QQ, n+1, n)		73	z = 0
19	r = vector(ZZ, n+1)		74	k = -1
20	rho = vector(QQ, n+1)			
21	v = vector(ZZ, n)		75	while z < n-1:
22	c = vector(QQ, n)		76	k = lift(mod(k+1, n-2))
23	w = vector(ZZ, n)		77	l = min(k+block-1, n-1)
24	for i in range(n+1):		78	h = min(1+1, n-1)
25	r[i] = i		79	print("(k, l, h) = ", k, l, h)
26	v[g] = 1		80	
27	last_nonzero = 1		81	R = 0.99 * Bnn[k]
28	$\mathbf{k} = \mathbf{g} + 1$		82	
29	flag = 0			
30	v1 = vector(ZZ, n)		83	v = ENUM(B, n, R, k, 1)
31	while (1):		84	if v != 0:
32	$rho[k-1] = rho[k] + (v[k-1] - c[k-1])^{2*Bnn[k-1]}$		85	z = 0
33	if $rho[k-1] \leq R$:		86	C = Matrix(ZZ, h+1, n)
34	if k==g+1:		87	for i in range(k):
35	R = 0.99 * rho[k-1]		88	C[i] = B[i]
36	flag += 1		89	C[k] = v
37	for i in range(n):		90	for i in range(k+1, h+1):
38	v1[i] = v[i]		91	
39	k = k-1			C[i] = B[i-1]
40	r[k-1] = max(r[k-1], r[k])		92	C = C.LLL()
41	for i in range(k+1, r[k]+1)[::-1]:		93	for i in range(1, h+1):
42	sigma[i-1, k-1] = sigma[i, k-1] + U[i-1, k-1]*v[i-1]		94	B[i-1] = C[i]
43	c[k-1] = -sigma[k, k-1]		95	BB, $U = GSO(B, n)$
44	v[k-1] = round(c[k-1])		96	Bnn = vector(QQ, n)
45	w[k-1] = 1		97	for i in range(n):
46	else:		98	$Bnn[i] = BB[i].norm()^2$
47	k = k+1		99	else:
48	if k==h+1:		100	z += 1
49	if flag == 0:		101	
50	return False			B = B.LLL()
51	else:		102	BB, $U = GSO(B, n)$
52	vv = v1[g] *B[g]		103	Bnn = vector(QQ, n)
53	for i in range(g+1, h+1):		104	for i in range(n):
54	vv += v1[i]*B[i]		105	$Bnn[i] = BB[i].norm()^2$
55	return vv		106	
56	r[k-1] = k		107	n = 20; d = 1000000
57	if k>=last_nonzero:		108	B = Matrix(ZZ, n)
58	last_nonzero = k		109	for i in range(0, n):
59	v[k-1] = v[k-1] + 1		110	
60	else:			B[i, i] = 1
61	if $v[k-1] > c[k-1]$:		111	B[i, 0] = randint(-d, d)
62	v[k-1] = v[k-1] - w[k-1]		112	show(B)
63	else:		113	B = B.LLL()
64	v[k-1] = v[k-1] + w[k-1]		114	BKZ(B, n, 10)
65	w[k-1] = w[k-1] + 1		115	show(B)

DeepBKZ (1/6): New Reduction

® RIKKYO UNIVERSITY

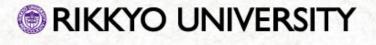


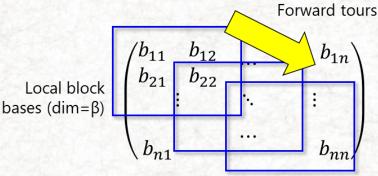
[YY17] J. Yamaguchi and M. Yasuda, Explicit formula for Gram-Schmidt vectors in LLL with deep insertions and its applications, 17 in: NuTMiC 2017, Lecture Notes in Computer Science 10737, Springer, pp. 142–160, 2017.

DeepBKZ (2/6): Basic Construction

Enhancement of BKZ

- Call DeepLLL as a subroutine in BKZ
 - DeepLLL is a straightforward generalization of LLL
 - It is called before every SVP oracle over a β-dimensional lattice





A) DeepLLL in global

B) SVP oracle over local blocks

DeepLLL

Only adjacent basis vectors are swapped

LLL

$$\mathbf{B} \leftarrow (\mathbf{b}_1, \dots, \mathbf{b}_{i+1}, \mathbf{b}_i, \dots, \mathbf{b}_n)$$

Non-adjacent basis vectors can be changed ⇒ shorter basis vectors can be found

$$\mathbf{B} \leftarrow (\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{b}_i, \dots, \mathbf{b}_{k-1}, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n)$$

deep insertion

Features

- Even small β can find a very short lattice vector
- DeepLLL is somewhat costly
- But for $\beta \ge 30$, SVP-calls are dominant and the cost is same as BKZ ¹⁸

DeepBKZ (3/6): Gram-Schmidt Formula

RIKKYO UNIVERSITY

insert

Complex basis transformation (general form)

$$- \mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \to \mathbf{C} = (\mathbf{b}_1, \dots, \mathbf{b}_{k-1}, \mathbf{v}, \mathbf{b}_k, \dots, \mathbf{b}_{n-1})$$

•
$$\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{b}_i = \sum_{i=1}^{n} v_i \mathbf{b}_i^*$$
 for some $x_i \in \mathbb{Z}$ with $x_n = \pm 1$

Gram-Schmidt formula in DeepLLL^[YY+15, YY17]

This enables to make DeepLLL practical like LLL

Proposition: Gram-Schmidt orthogonalization $[\mathbf{c}_1^*, \ldots, \mathbf{c}_n^*]$ of **C**

Set $m = \max \{k \le i \le n \mid \nu_i \ne 0\}$. Then we have

$$\mathbf{c}_{j}^{*} = \begin{cases} \sum_{i=k}^{m} \nu_{i} \mathbf{b}_{i}^{*} & \text{for } j = k, \\ \frac{D_{j}}{D_{j-1}} \mathbf{b}_{j-1}^{*} - \sum_{i=j}^{m} \frac{\nu_{i} \nu_{j-1} \|\mathbf{b}_{j-1}^{*}\|^{2}}{D_{j-1}} \mathbf{b}_{i}^{*} & \text{for } k+1 \leq j \leq m+1, \\ \mathbf{b}_{j-1}^{*} & \text{for } m+2 \leq j \leq n+1, \end{cases}$$

where $D_{\ell} = \sum_{i=\ell}^{m} \nu_i^2 \|\mathbf{b}_i^*\|^2$ for $1 \le \ell \le m$. In particular, $\mathbf{c}_{m+1}^* = \mathbf{0}$. For $k+1 \le j \le m$, we have

$$\|\mathbf{c}_{j}^{*}\|^{2} = rac{D_{j}}{D_{j-1}} \|\mathbf{b}_{j-1}^{*}\|^{2}$$

[YY+15] M. Yasuda, K. Yokoyama et al. Analysis of decreasing squared-sum of Gram-Schmidt lengths for short lattice vectors, 19 Journal of Mathematical Cryptology, Vol. 11, No. 1, pp. 1–24 (2015).

DeepBKZ (4/6): Properties of Reduction

RIKKYO UNIVERSITY

• $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: DeepBKZ-reduced

(1) δ -DeepLLL-reduced (1/4< δ <1)

- Size-reduced
- $\delta \|\mathbf{b}_i^*\|^2 \le \|\pi_i(\mathbf{b}_k)\|^2$ for all i < k
- ② β -BKZ-reduced (2≦ β ≦n)
 - $\|\mathbf{b}_i^*\| = \lambda_1(\pi_i(L))$ for all $1 \le i \le n$ (π_i is the orthogonal projection)
- Then we have

$$\delta \|\mathbf{b}_{1}\|^{2} \leq \|\mathbf{b}_{\beta+1}\|^{2} \leq \|\mathbf{b}_{\beta+1}^{*}\|^{2} + \frac{1}{4} \sum_{j=1}^{\beta} \|\mathbf{b}_{j}^{*}\|^{2}$$
$$\left(\delta - \frac{1}{4}\right) \frac{\|\mathbf{b}_{1}\|^{2}}{\|\mathbf{b}_{\beta+1}^{*}\|^{2}} \leq 1 + \frac{1}{4} \sum_{j=2}^{\beta} \frac{\|\mathbf{b}_{j}^{*}\|^{2}}{\|\mathbf{b}_{\beta+1}^{*}\|^{2}} \leq 1 + \frac{C_{\beta}}{4},$$
$$\text{where } C_{\beta} = \max \sum_{i=1}^{\beta-1} \frac{\|\mathbf{b}_{i}^{*}\|^{2}}{\|\mathbf{b}_{\beta}^{*}\|^{2}} \text{ over all HKZ-reduced } (\mathbf{b}_{1}, \dots, \mathbf{b}_{\beta})$$

DeepBKZ (5/6): Provable Output Quality ©RIKKYO UNIVERSITY

Lemma^[YNY20]

- Every DeepBKZ-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ satisfies

$$\frac{\|\mathbf{b}_{1}\|^{2}}{\|\mathbf{b}_{i\beta+1}^{*}\|^{2}} \leq \alpha \left(1 + \frac{C_{\beta}}{4}\right) \left\{1 + \frac{\alpha (1 + C_{\beta})}{4}\right\}^{i-1}$$

for $i \geq 1$, where $\alpha = \frac{4}{4\delta - 1} > \frac{4}{3}$

- Theorem^[YNY20]
 - **B** = $(\mathbf{b}_1, \dots, \mathbf{b}_n)$: (δ, β) -DeepBKZ-reduced basis of L
 - Assume *n* is divisible by β with $p = \frac{n}{\beta} \ge 2$
 - Then we have

$$\frac{\|\mathbf{b}_1\|}{\operatorname{vol}(L)^{1/n}} \leq \sqrt{\gamma_{\beta}} \left\{ \alpha \left(1 + \frac{C_{\beta}}{4}\right) \right\}^{\frac{\beta(p-1)}{2n}} \left\{ 1 + \frac{\alpha \left(1 + C_{\beta}\right)}{4} \right\}^{\frac{\beta(p-1)(p-2)}{4n}}$$

where γ_{β} is Hermite's constant of dimension β

[YNY20] M. Yasuda, S. Nakamura and J. Yamaguchi, Analysis of DeepBKZ reduction for finding short lattice vectors, Design, Codes and Cryptography, Vol. 88, No. 19, pp. 2077—2100 (2020).

DeepBKZ(6/6): Practical Output Quality ©RIKKYO UNIVERSITY

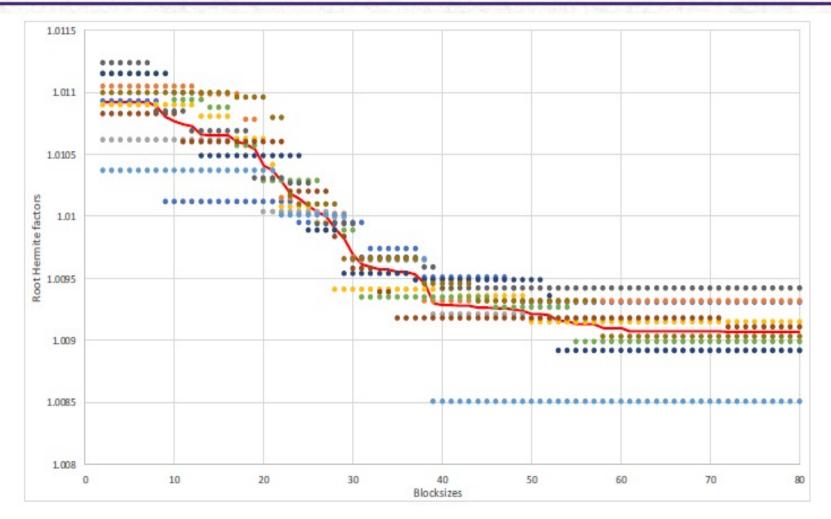


Fig. 1 The root Hermite factor of DeepBKZ with blocksizes $2 \le \beta \le 80$ for the SVP challenge in dimension n = 115 with seeds 0–9 (Each dot denotes the root Hermite factor for some seed, and the polygonal line denotes the average.)

22

New SVP Solutions by (Parallel) DeepBKZ

DeepBKZ found many new solutions for the SVP challenge

- In most dimensions up to n = 128
- We used blocksizes $\beta = 30-45$
- Our solutions are the shortest or very close to it
 - Since their approximation factors are close to 1.0 (0.98470 for n = 128)
- For n = 128, it took about 57.5
 hours by massive parallel
 computation using 24,576 cores

RIKKYO UNIVERSITY

_			_		_		_	
67	130	3025	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 11-15	1.04787
68	129	2818	1	Yuga Miyagi and Eiichiro Fujisaki	vec	Sieving	2019- 04-11	0.98161
69	129	2855	0	Yuga Miyagi, Tomohiro Sekiguchi, Eiichiro Fujisaki	vec	Sieving	2019- 03-26	0.99172
70	129	2875	0	Martin Albrecht, Leo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite, Marc Stevens	vec	Sieving	2018- 08-30	0.99878
71	129	2988	0	Martin R. Albrecht, Leo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite and Marc Ste	vec	Sieving	2018- 08-30	1.03813
72	128	2812	1	N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. <mark>Yasuda</mark> , K. Fujisawa	vec	BKZ	2021- 10-16	0.98470
73	128	2882	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 07-9	1.00477
74	128	2948	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 06-20	1.02755
75	128	2974	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 05-9	1.03665
76	128	2984	0	Kenji Kashiwabara and Masaharu fukase	vec	Other	2013- 09-23	1.04017
77	128	2992	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 09-19	1.04313
78	127	2790	3	N. Tateiwa, Y. Shinano, A. Yoshida, S. Nakamura, S. Kaji, M. <mark>Yasuda</mark> , Y. Aono, K. Fujisawa	vec	ENUM,BKZ,Other	2020- 06-7	0.97573
79	127	2890	1	Yuga Miyagi and Eiichiro Fujisaki	vec	Sieving	2019- 04-11	1.01429
80	127	2898	0	Yuga Miyagi, Tomohiro Sekiguchi, Eiichiro Fujisaki	vec	Sieving	2019- 03-25	1.01626
81	127	2932	2	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	Other	2018- 01-12	1.02804
82	126	2812	0	Tadanori TERUYA	vec	Sieving,Other	2019- 04-2	0.99052
83	126	2855	0	Yoshinori Aono and Phong Nguyen	vec	ENUM, BKZ	2014- 09-9	1.00556
84	126	2897	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2014- 08-27	1.02051
85	126	2906	0	Yoshinori Aono	vec	ENUM, BKZ	2014- 07-14	1.02357
86	126	2944	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 09-4	1.03679
87	126	2969	42	Yuanmi Chen and Phong Nguyen	vec	ENUM,BKZ	2013- 04-12	1.04356
88	125	2806	3	Jim Johnson	vec	Sieving	2021- 10-22	0.99077
89	125	2834	0	Tadanori TERUYA	vec	Sieving,Other	2019- 04-2	1.00341
90	125	2907	3	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	Other	2017- 11-20	1.02649
91	125	2922	8	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	ENUM,Other	2017- 10-15	1.03203

23

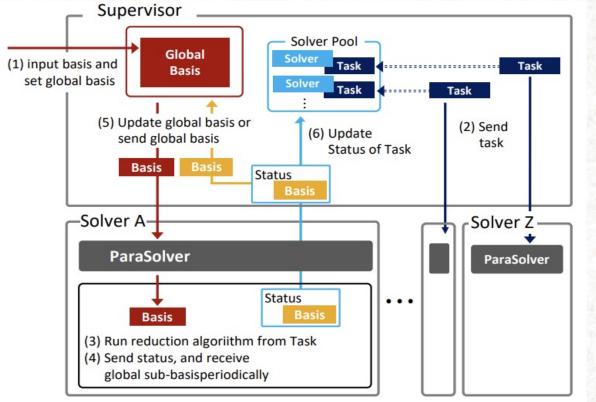
SVP Challenge (latticechallenge.org)

Massive Parallelization of DeepBKZ(1/8)

® RIKKYO UNIVERSITY

Parallel sharing DeepBKZ

- Distributed and asynchronous system using randomization and DeepBKZ
- Using CMAP-LAP^[TS+21], a general framework for lattice algorithms



Supervisor-Solvers Style

- Every solver runs DeepBKZ on a randomized basis independently
- Supervisor collects short basis vectors from solvers, and distributes them to solvers
- Every solver uses distributed vectors to accelerate its reduction process (See [TS+20] for sharing a shortest basis vector)

[TS+20] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, Massive Parallelization for Finding Shortest Lattice Vectors Based on Ubiquity General Framework, High Performance Computing, Networking, Storage, and Analysis (SC 20).
 [TS+21] N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems, High Performance Computing, Data, and Analytics (HiPC 2021).

Massive Parallelization of DeepBKZ(2/8)

® RIKKYO UNIVERSITY

Efficacy of parallel sharing DeepBKZ

Sharing k = 16 short basis vectors among solvers for dimension d = 120

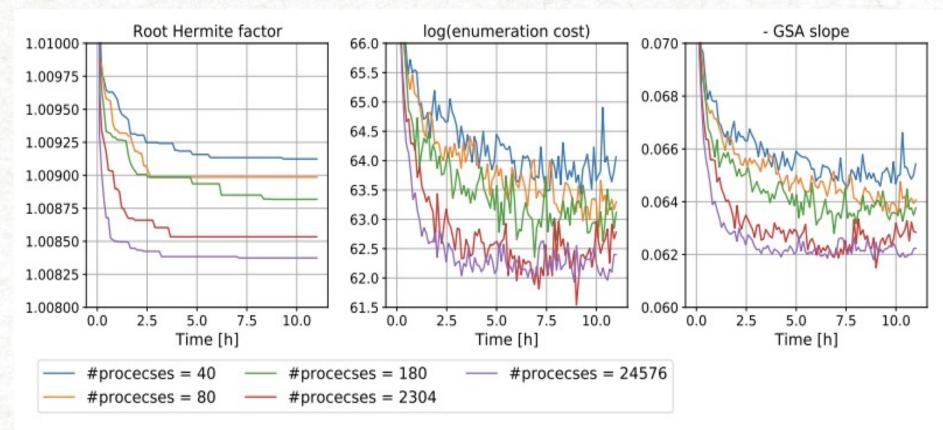


Fig. 11 Same as Figure 7, but the dimension is d = 120 and lines in each metric represent difference by different numbers of processes (We used k = 16 as the number of shares) 25

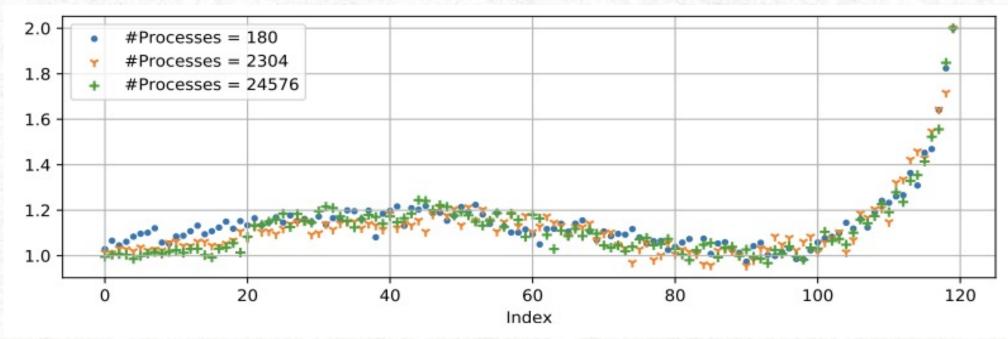
Massive Parallelization of DeepBKZ(3/8)

® RIKKYO UNIVERSITY

Output quality of parallel sharing DeepBKZ

- For an output basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of parallel sharing DeepBKZ,
- Gaps $\frac{\|\mathbf{b}_i^*\|}{GH(\pi_i(L))}$ are shown in the below Figure

 \Rightarrow First k = 16 basis vectors are close to the shortest in projected lattices



Massive Parallelization of DeepBKZ(4/8)

® RIKKYO UNIVERSITY

• Similarity of lattice bases

- Our parallel system is based on randomness of lattice bases
- But we have a trade-off between randomness and shared information
- Measurement of similarity based on Grassmann metrics
 - Given a multiset $\mathcal{B} = \{\mathbf{B}_1, \dots, \mathbf{B}_m\}$ of lattice bases in dimension d
 - The total projected diversity is defined as $Div(\mathcal{B}, d_g) = \frac{1}{d} \sum_{i=1}^{d} Div^i(\mathcal{B}, d_g)$

•
$$\operatorname{Div}^{i}(\mathcal{B}, d_{g}) = \frac{1}{\#P(\mathcal{B})} \sum_{(\mathbf{B}_{j}, \mathbf{B}_{k}) \in P(\mathcal{B})} d_{g}(Y^{i}(\mathbf{B}_{j}), Y^{i}(\mathbf{B}_{k}))$$
: the i-th projected diversity

$$-Y^{i}([\mathbf{b}_{1},...,\mathbf{b}_{d}]) = \left(\frac{\mathbf{b}_{i+1}^{*}}{\|\mathbf{b}_{i+1}^{*}\|},...,\frac{\mathbf{b}_{d}^{*}}{\|\mathbf{b}_{d}^{*}\|}\right): \text{normalized Gram-Schmidt vectors}$$

- d_g : Grassmann metric (equipped for the Grassmannian manifold Gr(k, n))
 - Gr(k, n) consists of k-dimensional linear subspaces in \mathbb{R}^n
 - » Every subspace is considered as a point in Gr(k, n)
 - d_g measures a distance between two points (=subspaces) in Gr(k, n)
 - » E.g., geodesic, chordal, projection 2-norm distances

Massive Parallelization of DeepBKZ(5/8)

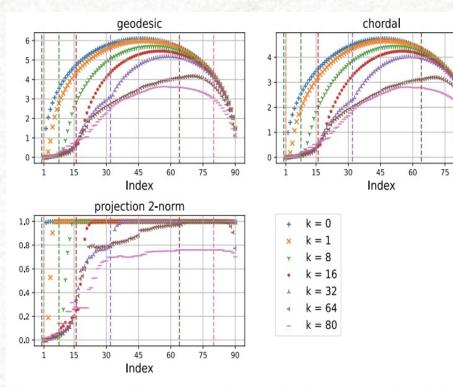
® RIKKYO UNIVERSITY

Experiments for the diversity of bases in our parallel system

- The number of shares $k \leq 16$ does not lose the diversity significantly for $d \geq 90$

90

- In contrast, $k \ge 32$ loses the diversity gradually in reduction process



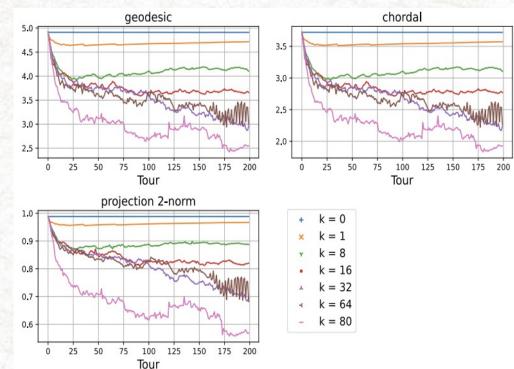
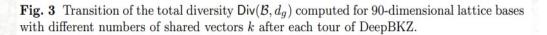


Fig. 2 The average of the *i*-th projected diversity $\text{Div}^i(\mathcal{B}, d_g)$ computed for 90-dimensional lattice bases with different numbers of shared vectors k right after 100 DeepBKZ tours.)



[TS+21] N. Tateiwa, Y. Shinano, M. Yasuda, S. Kaji, K. Yamamura and K. Fujisawa, "Massively parallel sharing lattice basis reduction", ZIB-Report 21-38, available at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/8520

Massive Parallelization of DeepBKZ(6/8)

RIKKYO UNIVERSITY

Large-scale experiments

- A very short lattice vector in a lattice of dimension around d = 130 can be found within 100 hours on supercomputers
 - Without using the sub-sieve strategy
- Small blocksizes $\beta = 30-40$ are

enough for parallel sharing DeepBKZ

Table 1 Computing platforms, operating systems, compilers and libraries

	Memory	~~~~	CPU		
Machine	/ node	CPU	frequency	# nodes	# cores
Lisa	384 GB	Xeon Platinum 9242	2.30 GHz	1,080	103,680
Emmy	384 GB	Xeon Platinum 9242	2.30 GHz	128	12,288
ITO	192 GB	Xeon Gold 6154	3.00 GHz	128	4,608
CAL A	256 GB	Xeon CPU E5-2640 v3	2.60 GHz	4	64
	256 GB	Xeon CPU E5-2650 v3	2.30 GHz	4	80
CAL C	32 GB	Xeon CPU E3-1284L v3	1.80 GHz	45	180

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. *Compilers and versions*: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304, impi2020.4.304]. *Libraries and versions*: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll v5.2.1.

Table 5 Large-scale experimental results of CMAP-DeepBKZ for SVP instances in dimensions d = 128, 130 and 132 (b₁ denotes a shortest basis vector of all solver's bases, and "Updated time" is wall time to update final shortest vectors found)

SVP Instance# ofDim.Seedcores*		# of	Updated	Norm	Approx.	Root Hermite	Machine [*] (Table 1)	
		cores*	time [h]	of \mathbf{b}_1	factor $\frac{\ \mathbf{b}_1\ }{\mathrm{GH}(L)}$	factor $\gamma^{1/d}$		
100	1†	24,576	57.5	2812.00	0.98470	1.00796	Emmy	
128	2	24,576	37.1	2947,45	1.02808	1.00830	Emmy	
120	3	103,680	81.1	2968.73	1.03001	1.00825	Lisa	
130	7	103,680	39.4	2914.22	1.01236	1.00811	Lisa	
100		24,576	34.6	2968.05	1.02260	1.00812	Emmy	
132	2	24,576	56.5	2899.90	0.99662	1.00818	Emmy	

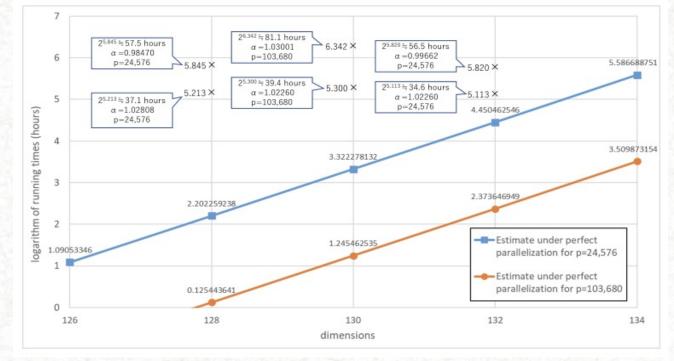
[†] a new solution for the Darmstadt SVP challenge [26] in dimension 128 (see also Table 6 for other dimensions). ^{*} We list the maximum number of cores and machines used for executions, including restarts, and the wall time for the updated time.

Massive Parallelization of DeepBKZ(7/8)

® RIKKYO UNIVERSITY

• Comparison with perfect parallelization (ideal model)

- [ABF+20] proposed a variant of enumeration-based BKZ with several improvements
- It estimated the cost of enumeration-based SVP solving (without parallelization)
- We compare running times of our parallel system with perfect parallelization of [ABF+20]
 - In case of using p = 24,576, our system is about 10 times slower than an ideal model for d = 128, 132
 - In case of using p = 103,680, our system is much slower for d = 130 (ours could be considerably improved)



[ABF+20] Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehle, D., Wen, W.: Faster enumeration-based lattice reduction: Root Hermite factor k^{1/(2k)} time k^{k/8+o(k)}. In: Advances in Cryptology–CRYPTO 2020, Lecture Notes in Computer Science, vol. 12171, pp. 186–212.

Massive Parallelization of DeepBKZ(8/8)

® RIKKYO UNIVERSITY

- Future Work: Use of our CMAP-LAP framework^[TS+21]
 - Supervisor-Worker parallelization type
 - Execution of heterogeneous algorithms (Reduction, ENUM, Sieve)
 - Acceleration by asynchronously sharing lattice vectors via vector pool
 - ⇒ We will embed optimal algorithms (e.g., pruned ENUM, sieve) in our framework for solving lattice problems of higher dimensions

