セキュリティ定量化のための理論的枠組み

安永憲司 東京工業大学

2022.3.18 @ 研究集会「量子暗号理論と耐量子暗号」早稲田大学(オンライン)

セキュリティの定量化とは?

• WY21 の枠組み

• WY21 からの考察

• まとめ・今後の展望

[WY21] Shun Watanabe, Kenji Yasunaga. Bit Security as Computational Cost for Winning Games with High Probability. Asiacrypt 2021

セキュリティの定量化とは?

Q.セキュリティの定量化は今までしてないの?

A. もちろんしています.

(c)EdDSA で利用される曲線の安全性評価

EdDSA に対する最良の攻撃法である ρ 法は誕生日の逆理に基づく確率的アルゴリズム であるため、付録 3 ではこの攻撃法に基づいて、Curve25519 及び Curve448 における ECDLP を解くにはそれぞれ 2^{125.8257}回と 2^{222.8257}回の楕円加算が必要であると見積もって いる。そのためそれぞれの ECDLP はほぼ 128 ビットのセキュリティレベルとほぼ 224 ビ ットセキュリティレベルを持つとしている。

また、付録5では量子アルゴリズムによる脅威に関しても言及されている。これまで の見積もりでは、256ビット ECDLP を解くためには 2000-3000 量子ビットが必要だと思 われ、誤り訂正などを考慮に入れると 600 万量子ビットが必要だと考えられる。近年の 量子コンピュータの実装の進展を考えると、今後の発展を注視する必要はあるものの、 これから 10 年間 EdDSA を使い続けて問題はないと考える。

「CRYPTREC Report 2020 暗号技術評価委員会報告」17ページ 5

Q. じゃあ何がしたいの?

A. 情報セキュリティのすべてを定量化したい

素因数分解・離散対数問題・偽造不可能性などの探索問題だけでなく, 判定 Diffie-Hellman (DDH) 仮定や 暗号の秘匿性(選択平文安全性)などの判定問題も定量化したい 複雑に組み合わせた技術・プロトコルのセキュリティも定量化したい

基本的な資源(乱数情報源・(量子)通信路など)の定量化も必要?

[WY21] Shun Watanabe, Kenji Yasunaga. Bit Security as Computational Cost for Winning Games with High Probability (Asiacrypt 2021)

What is Bit Security?

A "well-established" measure of quantifying the security level

Primitive *P* has *k*-bit security $\Leftrightarrow 2^k$ operations are needed to break *P*

Bit Security of One-Way Function

$$f: \{0,1\}^n \to \{0,1\}^n$$

$$\exists A \text{ with comp. cost } T \text{ s.t. } \Pr[A \text{ breaks } OW] = \varepsilon$$

$$f(x)$$

$$y$$

$$\exists f \text{ security is } \leq \log_2\left(\frac{T}{\varepsilon}\right) \quad \forall \text{ why?}$$

$$f(x)$$

$$g(x)$$

$$f(x)$$

$$g(x)$$

$$f(x)$$

$$g(x)$$

$$g(x$$

Questions

How to define bit security of decision primitives/assumptions (PRG, encryption, DDH) ?

Is the conventional advantage of $2 \cdot \left| \Pr[A \text{ wins game } G] - \frac{1}{2} \right|$ the right measure for bit security?

Our Contributions

Introduce a new framework for defining bit security

- Defined for security games G
- Same operational meaning for search/decision games:

G has *k*-bit security \Leftrightarrow

Every adversary needs cost of 2^k for winning *G* with high probability (say 0.99)

Characterizing bit security

- Rényi advantage is the right measure for decision games
 - Adversary plays binary hypothesis testing

Bit-security reductions between security games

Implications by Our Work

Bit security is formalized with operational meaning

• Cf. [Micciancio, Walter (Eurocrypt 2018)]

Quantity is defined by the task

Security levels of different primitives can be compared quantitatively

Reduction *tightness* may be reconsidered

Tight reduction ⇔ No bit-security loss

Bit Security in Our Framework

Implications:

- Every search game has finite bit security ($\leq m + O(1)$ if $a_i \in \{0,1\}^m$)
- A decision game may have infinite bit security (e.g. OTP encryption)
- For decision games,

plays binary hypothesis testing

Characterizing Bit Security

17

Proof Overview of Theorem 1 (for Decision Game)

Upper Bound

• Need to show $N \approx \frac{1}{D_{1/2}(A_0 ||A_1)}$ is sufficient to achieve $\Pr\left[\prod_{n=1}^{\infty} \text{ predicts } u\right] \ge 0.99$

• By standard technique of Bayesian hypothesis testing, the error probability is bounded by $\mu \leq \frac{1}{2} \exp\left(-\frac{N}{2}D_{1/2}(A_0 || A_1)\right)$

plays each game independently

Lower Bound

- It holds that $1 \Pr\left[\prod_{i=1}^{n} \operatorname{predicts} u\right] \ge \frac{1}{2} \left(1 \operatorname{TV}(A_0, A_1)\right)$
- Also we have $1 TV(A_0, A_1) \ge \frac{1}{2} \exp\left(-ND_{1/2}(A_0 || A_1)\right)$
- Thus it must be $N \gtrsim \frac{1}{D_{1/2}(A_0 \| A_1)}$

plays each game independently

Conventional Advantage vs Rényi Advantage

<u>Decision game (n = 1) :</u>

$$adv^{conv}\left(\bigodot) = \varepsilon \text{ if } \Pr\left[\oiint wins in \textcircled{} \textcircled{} \textcircled{} \textcircled{} \textcircled{} \end{matrix} \right] = \frac{1}{2}(1+\varepsilon)$$

$$adv^{Renyi}\left(\bigodot) \coloneqq D_{1/2}(A_0 || A_1)$$

$$\Pr\left[\oiint outputs 0\right] > \beta$$

$$\Pr\left[\oiint outputs 0\right] > \beta$$

$$\Pr\left[\oiint outputs 1\right] > \beta$$
for constant $\beta > 0$

$$adv^{Renyi}\left(\textcircled{} \textcircled{} \end{matrix} \right) \approx \varepsilon^2 \text{ for balanced}$$

"Peculiar" problem of linear tests for PRG can be resolved

PRG against Linear Tests

Pseudorandom generator $g: \{0,1\}^n \rightarrow \{0,1\}^m$

For any g, \exists linear test T s.t.

$$\Pr[T(g(x)) = 1] \approx \frac{1}{2} \left(1 + 2^{\frac{n}{2}}\right) \quad \text{[Alon, Goldreich, Hastad, Peralta (1992)]}$$

Since any linear test is balanced, we have

$$\operatorname{adv}^{\operatorname{conv}}(T) \approx 2^{-\frac{n}{2}}, \quad \operatorname{adv}^{\operatorname{Renyi}}(T) \approx 2^{-n}$$

If BS = min
$$\left\{ \log_2 \left(\frac{T}{adv^{conv}} \right) \right\}$$
, it must be $\leq \frac{n}{2}$ Counterintuitive!

In our framework, possible to achieve $BS = \min\left\{\log_2\left(\frac{T}{adv^{Renyi}}\right)\right\} \approx n$

Micciancio & Walter (2018) resolved the problem by their framework

Bit-Security Reductions

Distribution approximation:

- Game G^Q employing distribution Q is k-bit secure
- Distri. P and Q are k-bit secure indistinguishable

Hybrid arguments:

 H_i and H_{i+1} is k-BS IND \longrightarrow H_1 and H_m is $(k - 2 \log_2 m)$ -BS IND

 G^P is k-bit secure

A Technical Lemma

Lemma 1: Suppose *A* is an attacker for 1-bit game s.t. $A_0 = (\delta, 1 - \delta), A_1 = (q\delta, 1 - q\delta)$ for $0 \le \delta \le \frac{1}{32}, 0 \le q \le \frac{1}{16}$. Then, $\operatorname{adv}^{\operatorname{Renyi}}(A) := D_{1/2}(A_0 || A_1) \ge \delta/2$

PRG implies **OWF**

Theorem 2: *k*-bit secure PRG g is $(k - \alpha)$ -bit secure OWF for $\alpha = \log_2 T_g + O(1)$, where T_g is the cost for evaluating g

Proof:

- Suppose g is NOT $(k \alpha)$ -bit secure OWF
- By Theorem 1, $\exists OWF$ attacker A with cost T and $adv^{OWF}(A) \ge T/2^{k-\alpha}$
- PRG attacker A': Given x, runs A(x) = a. Outputs 0 if g(a) = x, and 1 o.w.
 - Complexity of A' is $T' = T + T_g$
- By Lemma 1, $\operatorname{adv}^{\operatorname{PRG}}(A') \gtrsim \Omega(T/2^{k-\alpha})$

IND-CPA Encryption implies OW-CPA Encryption

Theorem 3: Let P be an encryption scheme for message space *M*. If P is *k*-bit secure IND-CPA and $|M| \ge 2^{k-\alpha+O(1)}$, then P is $(k - \alpha)$ -bit secure OW-CPA for $\alpha = \log_2(T_{samp} + T_{eq}) + O(1)$, where T_{samp} and T_{eq} are the costs for sampling from *M* and checking the equality of two messages

Proof:

- Suppose P is NOT $(k \alpha)$ -bit secure OW-CPA
- By Theorem 1, $\exists OW-CPA$ attacker A with cost T and $adv^{OW-CPA}(A) \gtrsim T/2^{k-\alpha}$
- IND-CPA attacker A':
 - Choose two challenge messages $m_0, m_1 \in M$ uniformly at random
 - Given challenge ciphertext c, run A(c)
 - If A outputs either m_0 or m_1 , output the corresponding bit b'. Otherwise output 1.
 - Complexity of A' is $T' = T + T_{samp} + T_{eq}$
- By Lemma 1, $\operatorname{adv}^{\operatorname{IND-CPA}}(A') \gtrsim \Omega(T/2^{k-\alpha})$

24

DDH implies CDH

Theorem 4: Let G be a cyclic group of order p. If the DDH game of G is k-bit secure with $p \ge \max\{2^{k-O(1)}, 64\}$, then the CDH game of G is $(k - \alpha)$ -bit secure for $\alpha = \log_2 T_{eq} + O(1)$, where T_{eq} is the cost for checking the equality of two elements in G

Proof:

- Suppose the CDH game of G is NOT $(k \alpha)$ -bit secure
- By Theorem 1, \exists CDH attacker A with cost T and $adv^{CDH}(A) \gtrsim T/2^{k-\alpha}$
- DDH attacker A':
 - Given (g^x, g^y, g_u) , run $a \leftarrow A(g^x, g^y, g_u)$. Output 0 if $a = g_u$, and 1 o.w.
 - Complexity of A' is $T' = T + T_g$
- By Lemma 1, $\operatorname{adv}^{\operatorname{PRG}}(A') \geq \Omega(T/2^{k-\alpha})$

Balanced-Adversary Lemma

Lemma: If a 1-bit game G is not s.t. *k*-bit secure for balanced adversaries, then \exists balanced adversary A with running time T s.t. $\Pr[A \text{ wins } G] = \frac{1+\delta}{2}$ for $\delta \gtrsim \sqrt{T/2^k}$

Goldreich-Levin Theorem

Theorem 5: Let $f: \{0,1\}^n \to \{0,1\}^m$ be a *k*-bit secure OWF. Define $g: \{0,1\}^{2n} \to \{0,1\}^{n+m}$ as g(x,r) = (f(x),r)Then, $h(x,r) = \sum_i x_i \cdot r_i \mod 2$ is $(k - \alpha)$ -bit secure hard-core predicate for *g* against balanced adversaries for $\alpha = 2 \log_2 n + 3 \log_2 k + O(1)$.

Proof:

- <u>Goldreich-Levin theorem</u>: For \forall hard-core pred. attacker A with $\Pr[A(g(x,r)) = h(x,r)] > \frac{1+\delta}{2}$ and running time T_A , \exists OWF inverter A' s.t. $\Pr[A(g(x,r)) = (x,r)] = \Omega(\delta^2)$ and running time $T_{A'} = O\left(n^2 \left(\log_2\left(\frac{1}{\delta}\right)\right)^3 T_A\right)$
- Suppose that h(x, r) is not $(k \alpha)$ -bit secure HC for balanced adversaries
- By Balanced-Adversary Lemma, \exists balanced HC attacker *A* with running time T_A $\Pr[A(g(x,r)) = h(x,r)] > \frac{1+\delta}{2}$ for $\delta \gtrsim \sqrt{T_A/2^{k-\alpha}}$
- By GL theorem, $\exists OWF$ inverter A' s.t. $\Pr[A(g(x,r)) = (x,r)] = \Omega(T_{A'}/2^{k-\alpha}) \rightarrow f$ is not k-BS

WY21 からの考察

確率分布の近さを測るなら全変動距離よりも Hellinger 距離 ([WY21] の Distribution approximation の結果)

[Y21] Kenji Yasunaga. Replacing Probability Distributions in Security Games via Hellinger Distance. Information-Theoretic Cryptography (ITC) 2021

Security game for PKE

Pr[b' = b] ≈ 1/2

Total Variation Distance (a.k.a. Statistical Distance)

$$TV(P,Q) = \frac{1}{2}\sum_{x} |P(x) - Q(x)|$$

Security Analysis:

- (1) Pr[A wins the ideal game G_Q] = ε_Q
- (2) TV(P, Q) $\leq \delta$
- → Pr[A wins the real game G_P] = $\varepsilon_P \le \varepsilon_Q + \delta$

 $\delta = 2^{-80}$ is sufficient for 80 bit security ($\epsilon_P \approx 2^{-80}$)

Results of [WY21] & [Y21]

In Hellinger distance, $\delta = 2^{-40}$ is sufficient for 80 bit security

- Both for search and decision games
- Bit Security framework of [WY21] (as well as [MW18])

Leftover Hash Lemma for Hellinger distance

- The same parameters as for TV [Y21]
- Can be shown by LHL for KL divergence [BBCM94] and relation b/w KL & HD

[BBCM94] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Ueli M. Maurer: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1994

Hellinger Distance

$$HD(P,Q) = \sqrt{\frac{1}{2}\sum_{x} \left(\sqrt{P(x)} - \sqrt{Q(x)}\right)^2} = \sqrt{1 - \sum_{x} \sqrt{P(x) \cdot Q(x)}}$$

• $0 \leq \operatorname{HD}(P,Q) \leq 1$

• $\operatorname{HD}(P,Q)^2 \leq \operatorname{TV}(P,Q) \leq \sqrt{2} \cdot \operatorname{HD}(P,Q)$

•
$$D_{1/2}(P||Q) \approx HD(P,Q)^2$$
 for $D_{1/2}(P||Q) \le \frac{1}{2}$

•
$$\operatorname{HD}(P,Q)^2 \leq \frac{1}{2}\operatorname{KL}(P,Q)$$

Tensorization Property: For product dist. P^ℓ = (P, ..., P), Q^ℓ = (Q, ..., Q), HD(P^ℓ, Q^ℓ) ≤ √ℓ · HD(P, Q) → TV(P^ℓ, Q^ℓ) ≤ √2ℓ · HD(P, Q)
Cf. TV(P^ℓ, Q^ℓ) ≤ ℓ · TV(P, Q) Theorem 6 (Security for search/decision game): If G_Q has k-bit security and $HD(P,Q) \le 2^{-k/2}$, then G_P has (k - O(1))-bit security.

Theorem holds for both search/decision games in the frameworks [MW18] [WY21]

Proofs crucially use Tensorization Property of HD

Proof Overview of Theorem 6 (for Decision Game)

- Suppose G_P is not $(k \alpha)$ -bit secure
- By Theorem 1, $\exists A \text{ s.t.} \frac{T}{\operatorname{adv}(A)} \leq 2^{k-\alpha}$ where $\operatorname{adv}(A) \approx \operatorname{HD}(A_0^p, A_1^p)^2$
- By Tensorization Property, $HD(A_u^P, A_u^Q) \le \sqrt{T} \cdot 2^{-k/2}$
- By Triangle Inequality, $\begin{aligned} \mathrm{HD}(A_0^P, A_1^P) &\leq \mathrm{HD}(A_0^P, A_0^Q) + \mathrm{HD}(A_0^Q, A_1^Q) + \mathrm{HD}(A_1^Q, A_1^P) \\ &\leq \mathrm{HD}(A_0^Q, A_1^Q) + 2\sqrt{T \cdot 2^{-k}} \end{aligned}$
- Thus, $\operatorname{HD}(A_0^Q, A_1^Q) \ge \sqrt{T \cdot 2^{-(k-\alpha)}} 2\sqrt{T \cdot 2^{-k}} \approx \sqrt{T \cdot 2^{-k}}$
- A satisfies $\frac{T}{\text{adv}(A)} = \frac{T}{\text{HD}(A_0^Q, A_1^Q)^2} \lesssim 2^k$, a contradiction (Q.E.D.)

Leftover Hash Lemma for Hellinger distance

Leftover Hash Lemma [BB85, ILL89] : Universal hash family $H = \{H: \{0,1\}^n \rightarrow \{0,1\}^m\}$ with $|H| = 2^d$ gives a (k, ε) -strong extractor $Ext: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ for $k - m = 2\log\left(\frac{1}{\varepsilon}\right) - 1$ TV $((Ext(X, U_d), U_d), U_{m+d}) \le \varepsilon$ Entropy Loss

まとめ・今後の展望

まとめ

操作的な意味をもつセキュリティ定量化の枠組み [WY21]

G が k-ビットセキュリティ ⇔ どの攻撃者も *G* に 99% の確率で 勝つには計算コスト 2^k が必要

判定ゲームでは Rényi advantage を使うべき

確率分布の近さを測るには全変動距離ではなく Hellinger 距離

今後の展望

様々な安全性(情報理論的安全性,量子情報)への適用可能 内側・外側攻撃者を使った新しい帰着?(既存は内側だけ) タイトな帰着 → ビットセキュリティ損失なし帰着 資源(情報源・通信路)のビットセキュリティ?