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What is Bit Security?

A “well-established” measure of quantifying the security level

Primitive P has k-bit security < 2* operations are needed to break P

ﬁ
_
ﬁ
[mdefine bit security? ]




Bit Security of One-Way Function

f:{01}"= {0,1}"
JA with comp. cost T s.t. Pr[A breaks OW] = ¢

‘ Bit security is < log, (—D
. _ _ _ Can be extended to other search primitives
What if invoking A4 in total N times? and assumptions (Signature, Factoring, CDH)
= fx) - fx) - f)
— vy — vy — vy
Pr| some A breaks OW | will be amplified to N

‘ The total costis O(N - T) =0 (—D ‘ BS = min {1082 é)} :




Questions

How to define bit security of decision primitives/assumptions
(PRG, encryption, DDH) ?

Is the conventional advantage of 2 - [Pr|A wins game G| -

2
the right measure for bit security?
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Our Contributions

Introduce a new framework for defining bit security
o Defined for security games G
e Same operational meaning for search/decision games:

Every adversary needs cost of 2% for

G has k-Dbit ity <
as k-bit security winning G with high probability (say 0.99)

Characterizing bit security
o Rényi advantage is the right measure for decision games
« Adversary plays binary hypothesis testing

Bit-security reductions between security games
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Implications by Our Work

Bit security is formalized with operational meaning

e Cf. [Micciancio, Walter (Eurocrypt 2018)]
Quantity is defined by the task }

Security levels of different primitives can be compared quantitatively

Reduction tightness may be reconsidered

e Tight reduction <~ No bit-security loss
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Our Framework
@r random secret u € {0,1%

Two adversaries: inner ’ and outer l Search game (n > 1) :

Pr[ ’ wins G] = 0

— . Decision game (n = 1) :
Inner plays a “usual” game G [’ —_— }
D E— Pr[ ’ wins G|
:= Pr| ’ predicts u] z—;/
Outer invokes game G to amplify the “winning probability”




The Winning Condition of ’

Search game (n > 1) : ’
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Each ! plays an independent game with fresh u;

Pr[’ wins | = Pr [some ’ wins [’E o } ] )




The Winning Condition of ’

Decision game (n = 1) : ’ /
—_—— U
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u u u

Each ’ plays an independent game with consistent u

Pr[’ wins] = Pr[u’ = u]

=== =
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Bit Security in Our Framework

Error probability, say p = 0.01 1

Bit security of game ¢ = min{logz(N -T) : Pr[’ wins] >1— u}
& ¢

. — g
# invocations by Cost for running —

Implications:
e Every search game has finite bit security (£ m + 0(1) if a; € {0,1}'")

e A decision game may have infinite bit security (e.g. OTP encryption)

e For decision games, ’ plays binary hypothesis testing
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Characterizing Bit Security

h
— ©
h

Theorem 1: For any security game G, ACOSt for running “

]

T
Bit security of ¢ = minjlog ( >}+0(1)
g { *\aa (W)

where

h

adv (’) = Pr[ ’ wins [ = U} for search game G;

adv (’) = advRenyi (’) = Dy,,(4o||41) for decision game G;
Rényi divergence of order 1/2

D12 (PIIQ) = —21n ) /PGIQ)

A, : Output distribution of ’
when u € {0,1} is chosen
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Proof Overview of Theorem 1 (for Decision Game)

Upper Bound

e Need to show N = ! is sufficient to achieve Prl’ predicts u ] > 0.99
D1/2(40l|A1)

e By standard technique of Bayesian hypotheS|s testlng,
the error probability is bounded by p <= exp —= D1/2 (Ao ||A1))

’ plays each game independently
Lower Bound

e |t holds that 1 — Pr[’ predicts u ] 2—; (1—TV(4y, A1)

e Also we have 1 —TV(4,, 4;) z—iexp (—ND1/2 (Ao||A1))

. 1
e Thusit mustbe N =
D1/2(40l41) ’ plays each game independently
18




Conventional Advantage vs Rényi Advantage

Decision game (n = 1) :

adveonv (!) = ¢ |f Pr:’ wins in [’EV} ] =—;(1+€)

advReny! (’) = Dy/5(Ao|41)

Proposition 1: For any decision game,

e2 < advRemwy! (’) < ¢ for any ’ %

advRenyl (’) ~ g2 for balanced ’

Pr ' outputs 0 | >
Pr ’ outputs1 | > f
/Qor constant § > 0 /

» “Peculiar” problem of linear tests for PRG can be resolved
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PRG against Linear Tests

Pseudorandom generator g: {0,1}"*— {0,1}'"

For any g, dlinear test T s.t.

Pr(T(g(x)) = 1] z—;(l + 2*121) [Alon, Goldreich, Hastad, Peralta (1992)]

Since any linear test is balanced, we have

adveonV(T) = 27z, advRenwy(T) = 277

- 2 Counterintuitive! }
2

If BS = min {log, ( )}. it must be <

advconv

In our framework, possible to achieve BS = min {logz (a dv}fenyi)} ~n

Micciancio & Walter (2018) resolved the problem by their framework
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Bit-Security Reductions

k-bit secure PRG mmp k-bit secure OWF
k-bit secure IND-CPA Enc mmp k-bit secure OW-CPA Enc
k-bit secure DDH assumption =) k-bit secure CDH assumption

Goldreich-Levin theorem:
e k-bit secure OWF # k-bit secure HC for balanced adversaries

[ General case remains open

Distribution approximation:
o Game G employing distribution Q is k-bit secure
. : i » G? is k-bit secure
e Distri. P and Q are k-bit secure indistinguishable

Hybrid arguments:
H; and H;,4 is k-BS IND » H, and H,, is (k — 21log, m)-BS IND

21



A Technical Lemma

Lemma 1: Suppose A is an attacker for 1-bit game s.t.

Ag=(8,1 = 8), 4, =(q5,1 —q&)for0<§<—,0<q<—.

Then, advR*™!(4): = Dy ,,(Ao||41) = 6/2
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PRG implies OWF

Theorem 2: k-bit secure PRG g is (k — a)-bit secure OWF
for « =log, T, + 0(1), where T is the cost for evaluating g

Proof:

e Suppose g is NOT (k — a)-bit secure OWF

e By Theorem 1, 30WF attacker A with cost T and adv®W(4) = T /2«

e PRG attacker A’: Given x, runs A(x) = a. Outputs 0 if g(a) = x, and 1 o.w.
o Complexity of A'isT' =T + T,

e By Lemma 1, advPR6(4") = Q(T/2F %)
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IND-CPA Encryption implies OW-CPA Encryption

Theorem 3: Let P be an encryption scheme for message space M.
If P is k-bit secure IND-CPA and |M| > 2k-a+0(1) |
then P is (k — a)-bit secure OW-CPA for a = log, (Tsamp + Teq) + 0(1),
where Tsamp and Tq are the costs for sampling from M and checking
the equality of two messages

Proof:

e Suppose P is NOT (k — a)-bit secure OW-CPA

e By Theorem 1, 30OW-CPA attacker A with cost T and adv®W~CPA(4) = T /2~
e IND-CPA attacker A’:

e Choose two challenge messages my, m; € M uniformly at random

o Given challenge ciphertext c, run A(c)

e If A outputs either m, or m;, output the corresponding bit b’. Otherwise output 1.
o Complexity of Ais T' =T + Tgymp + Teq

e By Lemma 1, adv!NP~CPA(A") = (T /2%~ %)

24




DDH implies CDH

Theorem 4: Let G be a cyclic group of order p.
If the DDH game of G is k-bit secure with p > max{2¥=0(1) 64},
then the CDH game of G is (k — a)-bit secure for a = log, T, + 0(1),
where Tgq is the cost for checking the equality of two elements in G

Proof:

e Suppose the CDH game of G is NOT (k — a)-bit secure

e By Theorem 1, 3CDH attacker A with cost T and adv*PH(4) = T /2F~¢
e DDH attacker A’:

o Given (g*,g9”,9,), run a < A(g*, g%,9,)- Output O ifa = g,, and 1 o.w.
o Complexity of A"isT' =T + T,

e By Lemma 1, advPR¢(4") = (T /2% %)
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Balanced-Adversary Lemma ' '
’ outputs 0 | > f

Pr ’ outputs 1

for constant f > 0

\

> p
/

Lemma: If a 1-bit game G is not s.t. k-bit secure for balanced adversaries,
then 3balanced adversary A with running time T s.t.

Pr[A wins G] = for § = |/T/2F

26



Goldreich-Levin Theorem

Theorem 5: Let f:{0,1}" - {0,1}" be a k-bit secure OWF.
Define g: {0,1}*" - {0,1}**™ as g(x,7) = (f(x),7)
Then, h(x,r) = };;x; - r; mod 2 is (k — «)-bit secure hard-core predicate
for g against balanced adversaries for « = 2log, n + 3log, k + 0(1).

Proof:

Goldreich-Levin theorem: s
For Yhard-core pred. attacker A with Pr[A(g(x,7)) = h(x,1)] >1—J2r and running time T,

3
JOWF inverter A’ s.t. Pr[A(g(x,7)) = (x,7)] = Q(8%) and running time T, = 0 (nz (log2 (—;)) TA)

Suppose that h(x,r) is not (k — a)-bit secure HC for balanced adversaries
By Balanced-Adversary Lemma, 3balanced HC attacker A with running time T,

5
Pr[A(g(x,7)) = h(x,7)] > % for § = /T, /2%
By GL theorem, 3OWF inverter A’ s.t. Pr[A(g(x, 1)) = (x,1)] = _Q(TA,/Zk—a) > fisnot k-BS
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Security game for PKE

pK (pk, sk) € Gen(r)
’ Mg, My L)
———————————————————————————
C
l r——————————— b < {0,1}
5 c < Enc(pk, my; r’)

Prb =b]~1/2
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Security game for PKE

—

X
|

b’

pk

Mg, My

Prb =b]~1/2

(pk, sk) < Gen(r)

—

b < {0,1}
c < Enc(pk, my;

i
0

[

What closeness do we need
to preserve the security level?

]/ T

)
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Total Variation Distance (a.k.a. Statistical Distance)

TV(P,Q) = % [P(x) — Q(x)| dealQ  RealP

e

TV(P, Q)

Security Analysis:

(1) Pr[ A wins the ideal game Gq ] = €q
@ TVEP Q) <o

= Prl Awins thereal game Gp] =ep<€eq+ 0

N
[ 6 = 2-80 s sufficient for 80 bit security (ep = 2-80) ]
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Results of [WY21] & [Y21]

In Hellinger distance, 6 = 240 is sufficient for 80 bit security
e Both for search and decision games
o Bit Security framework of [WY21] (as well as [M\W18])

Leftover Hash Lemma for Hellinger distance
e The same parameters as for TV [Y21]
e Can be shown by LHL for KL divergence [BBCM94] and relation b/w KL & HD

=>» Entropy loss of LHL can be reduced by half with HD-based analysis

& HIHH HD

160 bit N 80 bit
entropy loss entropy loss

(@\\\ — |||||||||| — (@\\

[BBCM94] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Ueli M. Maurer: -
Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1994




Hellinger Distance

HD(P, Q)—j > (/PG - a@) Jl—ZJPm Q(x)

e 0 <HD(P,Q0) <1

e HD(P, Q)% < TV(P,Q) <+2-HD(P,Q)
(0,1) (\/P(O)'\/P(l)) ® D1/2(P”Q) ~ HD(P, Q)Z for Dl/Z(P”Q) S_:Zl

VZ - HD(P, Q) e HD(P,Q)? < KL(P,Q)
e Tensorization Property:
For product dist. P* = (P,-+,P),Q* = (Q,--+, Q),
HD(P?,Q*) < V¢ -HD(P, Q)
0 (1,0) > TV(P?, Q") <V2¢-HD(P, Q)
o Cf. TV(P%, Q) <¢-TV(P,Q)

(Ve(),Je)
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If Gy has k-bit security and HD(P, Q) < 27%/7,
then Gp has (k — 0(1))-bit security.

Theorem 6 (Security for search/decision game):

Theorem holds for both search/decision games
in the frameworks [MW18] [WY21]

Proofs crucially use Tensorization Property of HD
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Proof Overview of Theorem 6 (for Decision Game)

e Suppose Gp is hot (k — a)-bit secure

T
adv(4)

e By Tensorization Property, HD(AZ,AS) < T -27K/2

e By Theorem 1, 3A s.t. < 2% where adv(A) ~ HD(A4g, A})?

e By Triangle Inequality,
HD(AL, A?) < HD(A5, A9) + HD(AY,AY) + HD(4Y, 4F)
< HD(AY, A9) + 24T - 2%

o Thus, HD(A,AY) = VT - 2-(k=0) — 2T . 27k T . 27F
. T
adv(4) HD(AS,4)

o A satisfies > < 2%, a contradiction (Q.E.D.)
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Leftover Hash Lemma for Hellinger distance

Leftover Hash Lemma [BB85, ILL89] :

Universal hash family H = {H: {0,1}"— {0,1}™} with
|H| = 2% gives a (k, £)-strong extractor

Ext: {0,1}"x{0,1}4- (0,13 for k — m = 2log(~) — 1

—X T
TV((Ext(X, Uy),Uy), Um+d) <e Entropy Loss

Theorem 7:

Universal hash family gives a (k, €)-strong Hellinger

extractor for k — m = 2log (%) -1

N~

\ eNSNS———
HD((Ext(X,Uq), Ug), Umsa) < &
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