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セキュリティの定量化とは？
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セキュリティの定量化とは？



Q.セキュリティの定量化は今までしてないの？
A.もちろんしています．

「CRYPTREC Report 2020 暗号技術評価委員会報告」17ページ 5



Q.じゃあ何がしたいの？
A.情報セキュリティのすべてを定量化したい

素因数分解・離散対数問題・偽造不可能性などの探索問題だけでなく，
判定 Diffie-Hellman (DDH) 仮定や
暗号の秘匿性（選択平文安全性）などの判定問題も定量化したい

複雑に組み合わせた技術・プロトコルのセキュリティも定量化したい

基本的な資源（乱数情報源・（量子）通信路など）の定量化も必要？
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WY21 の枠組み

[WY21] Shun Watanabe, Kenji Yasunaga. Bit Security as Computational Cost for 
Winning Games with High Probability (Asiacrypt 2021) 



What is Bit Security?

A “well-established” measure of quantifying the security level 

Primitive 𝑃 has 𝑘-bit security   ó 2! operations are needed to break 𝑃

How can we define bit security?
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Bit Security of One-Way Function

𝑓 ∶ {0,1}"→ {0,1}"

∃𝐴 with comp. cost 𝑇 s.t. Pr 𝐴 breaks OW = ε
𝑓(𝑥)
𝑦

Bit security is ≤ log#
$
%

𝑓(𝑥)
𝑦

𝑓(𝑥)
𝑦

𝑓(𝑥)
𝑦

・・・

Pr some 𝐴 breaks OW will be amplified to 𝜀𝑁

The total cost is 𝑂 𝑁 F 𝑇 = 𝑂 $
%

What if invoking 𝐴 in total 𝑁 times?

Why?

Can be extended to other search primitives 
and assumptions (Signature, Factoring, CDH)

BS = min
&

log#
𝑇
ε 9



Questions

How to define bit security of decision primitives/assumptions 
(PRG, encryption, DDH) ?

Is the conventional advantage of  2 F Pr 𝐴 wins game 𝐺 − '
#

the right measure for bit security?
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Our Contributions

Introduce a new framework for defining bit security
l Defined for security games 𝐺
l Same operational meaning for search/decision games: 

𝐺 has 𝑘-bit security   ó

Characterizing bit security
l Rényi advantage is the right measure for decision games

l Adversary plays binary hypothesis testing

Bit-security reductions between security games

Every adversary needs cost of 2! for 
winning 𝐺 with high probability (say 0.99)
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Implications by Our Work

Bit security is formalized with operational meaning

l Cf. [Micciancio, Walter (Eurocrypt 2018)]

Security levels of different primitives can be compared quantitatively

Reduction tightness may be reconsidered

l Tight reduction ó No bit-security loss

12

Quantity is defined by the task



Our Framework

Two adversaries: inner            and outer

Inner            plays a “usual” game 𝐺

Outer           invokes game 𝐺 to amplify the “winning probability”

・・・

・・・

For random secret 𝑢 ∈ {0,1}!

Search game (𝑛 ≫ 1) :

Pr[ wins 𝐺] ≈ 0

Decision game (𝑛 = 1) :

Pr wins 𝐺
≔ Pr predicts 𝑢 ≈ "

#
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The Winning Condition of

Search game (𝑛 ≫ 1) :

・・・

・・・
𝑎' 𝑎# 𝑎(

𝑎)

𝑢' 𝑢# 𝑢( 𝑢)

Each        plays an independent game with fresh 𝑢*

Pr wins ≔ Pr some wins
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The Winning Condition of

Decision game (𝑛 = 1) :

・・・

𝑢 𝑢 𝑢 𝑢

Each        plays an independent game with consistent 𝑢

Pr wins ≔ Pr 𝑢+ = 𝑢

𝑢′

・・・
𝑎' 𝑎# 𝑎(

𝑎)
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Bit Security in Our Framework

Bit security of game 𝐺 ≔ min log# 𝑁 F 𝑇 ∶ Pr wins ≥ 1 − µ

Implications:

l Every search game has finite bit security (≤ 𝑚 + 𝑂(1) if 𝑎* ∈ 0,1 , )

l A decision game may have infinite bit security (e.g. OTP encryption)

l For decision games,          plays binary hypothesis testing

Cost for running        # invocations by

Error probability, say µ = 0.01
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Characterizing Bit Security

Theorem 1: For any security game 𝐺, 

Bit security of  𝐺 = min log#
$

234
+ 𝑂(1)

where

adv = Pr wins for search game 𝐺;

adv = adv56789 ≔ 𝐷'/# 𝐴;^𝐴' for decision game 𝐺;

Cost for running        

Rényi divergence of order 1/2

𝐷"/# 𝑃‖𝑄 ≔ −2 lnG
%

𝑃 𝑥 𝑄(𝑥)
𝐴& : Output distribution of        

when 𝑢 ∈ {0,1} is chosen 
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Proof Overview of Theorem 1 (for Decision Game)

Upper Bound

l Need to show 𝑁 ≈ !
!!/# "$#"!

is sufficient to achieve Pr predicts 𝑢 ≥ 0.99

l By standard technique of Bayesian hypothesis testing,
the error probability is bounded by µ ≤ !

"
exp −#

"
𝐷'/# 𝐴;#𝐴'

Lower Bound

l It holds that 1 − Pr predicts 𝑢 ≥ $
%
1 − TV 𝐴&, 𝐴$

l Also we have 1 − TV 𝐴&, 𝐴$ ≥ $
%
exp −𝑁𝐷$/% 𝐴&8𝐴$

l Thus it must be 𝑁 ≳ !
<(/) &*=&(
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plays each game independently

plays each game independently



Conventional Advantage vs Rényi Advantage

Decision game (n = 1) :

adv>?74 = 𝜀 if   Pr wins in = '
#
(1 + 𝜀)

adv56789 ≔ 𝐷'/# 𝐴;^𝐴'

Proposition 1: For any decision game, 

𝜀# ≲ adv56789 ≲ 𝜀 for  any 

adv56789 ≈ 𝜀# for  balanced

“Peculiar” problem of linear tests for PRG can be resolved

Pr outputs 0 > 𝛽

Pr outputs 1 > 𝛽

for constant 𝛽 > 0
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PRG against Linear Tests

Pseudorandom generator  𝑔: {0,1}$→ {0,1}%

For any 𝑔, ∃linear test 𝑇 s.t. 

Pr 𝑇 𝑔 𝑥 = 1 ≈ !
"
1 + 2&

%
# [Alon, Goldreich, Hastad, Peralta (1992)]

Since any linear test is balanced, we have

adv'()* 𝑇 ≈ 2&
%
# , adv+,)-. 𝑇 ≈ 2&$

If  BS = min log"
/

01*&'()
, it must be ≤ $

"

In our framework, possible to achieve BS = min log"
/

01**+(,-
≈ 𝑛

Micciancio & Walter (2018) resolved the problem by their framework

Counterintuitive!
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Bit-Security Reductions

𝑘-bit secure PRG 𝑘-bit secure OWF
𝑘-bit secure IND-CPA Enc          𝑘-bit secure OW-CPA Enc
𝑘-bit secure DDH assumption         𝑘-bit secure CDH assumption
Goldreich-Levin theorem:

l 𝑘-bit secure OWF           𝑘-bit secure HC for balanced adversaries

Distribution approximation:
l Game 𝐺+ employing distribution 𝑄 is 𝑘-bit secure
l Distri. 𝑃 and 𝑄 are 𝑘-bit secure indistinguishable

Hybrid arguments:
𝐻* and 𝐻*I' is 𝑘-BS IND             𝐻' and 𝐻, is (𝑘 − 2 log#𝑚)-BS IND

General case remains open

𝐺J is 𝑘-bit secure

21



A Technical Lemma

Lemma 1: Suppose 𝐴 is an attacker for 1-bit game s.t.
𝐴; = (𝛿, 1 − 𝛿), 𝐴' = (𝑞𝛿, 1 − 𝑞𝛿) for 0 ≤ 𝛿 ≤ '

(#
, 0 ≤ 𝑞 ≤ '

'K
.

Then, adv56789 𝐴 := 𝐷'/# 𝐴;^𝐴' ≥ 𝛿/2
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PRG implies OWF

Theorem 2: 𝑘-bit secure PRG g is (𝑘 − 𝛼)-bit secure OWF  
for 𝛼 = log# 𝑇L + 𝑂(1), where 𝑇L is the cost for evaluating g

Proof:

l Suppose g is NOT (𝑘 − 𝛼)-bit secure OWF

l By Theorem 1, ∃OWF attacker 𝐴 with cost 𝑇 and advMNO(𝐴) ≳ 𝑇/2!PQ

l PRG attacker A’: Given x, runs A(x) = a. Outputs 0 if g(a) = x, and 1 o.w.
l Complexity of A’ is 𝑇, = 𝑇 + 𝑇-

l By Lemma 1, advR5S 𝐴+ ≳ Ω 𝑇/2!PQ
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IND-CPA Encryption implies OW-CPA Encryption

Theorem 3: Let P be an encryption scheme for message space 𝑀.
If P is 𝑘-bit secure IND-CPA and |𝑀| ≥ 2!PQIT(') , 
then P is (𝑘 − 𝛼)-bit secure OW-CPA for 𝛼 = log#(𝑇W2XY + 𝑇6Z) + 𝑂(1), 
where 𝑇W2XY and 𝑇6Z are the costs for sampling from 𝑀 and checking 
the equality of two messages

Proof:
l Suppose P is NOT (𝑘 − 𝛼)-bit secure OW-CPA
l By Theorem 1, ∃OW-CPA attacker 𝐴 with cost 𝑇 and adv23&456(𝐴) ≳ 𝑇/27&8

l IND-CPA attacker A’: 
l Choose two challenge messages  𝑚', 𝑚" ∈ 𝑀 uniformly at random
l Given challenge ciphertext c, run A(c)
l If A outputs either 𝑚' or 𝑚", output the corresponding bit b’. Otherwise output 1.
l Complexity of A’ is 𝑇( = 𝑇 + 𝑇)*+, + 𝑇-.

l By Lemma 1, adv9:;&456 𝐴< ≳ Ω 𝑇/27&8 24



DDH implies CDH

Proof:
l Suppose the CDH game of G is NOT (𝑘 − 𝛼)-bit secure
l By Theorem 1, ∃CDH attacker 𝐴 with cost 𝑇 and adv[\](𝐴) ≳ 𝑇/2!PQ

l DDH attacker 𝐴′: 
l Given (𝑔., 𝑔/ , 𝑔0), run 𝑎 ← 𝐴(𝑔., 𝑔/ , 𝑔0). Output 0 if 𝑎 = 𝑔0, and 1 o.w.
l Complexity of 𝐴′ is 𝑇, = 𝑇 + 𝑇-

l By Lemma 1, advR5S 𝐴+ ≳ Ω 𝑇/2!PQ

Theorem 4:  Let G be a cyclic group of order 𝑝.
If the DDH game of G is 𝑘-bit secure with 𝑝 ≥ max{2!PT ' , 64},
then the CDH game of G is (𝑘 − 𝛼)-bit secure for 𝛼 = log# 𝑇6Z + 𝑂(1),
where 𝑇6Z is the cost for checking the equality of two elements in G
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Balanced-Adversary Lemma

Lemma: If a 1-bit game G is not s.t. 𝑘-bit secure for balanced adversaries,
then ∃balanced adversary 𝐴 with running time 𝑇 s.t.
Pr[𝐴 wins 𝐺] = 'I^

#
for δ ≳ 𝑇/2!

Pr outputs 0 > 𝛽

Pr outputs 1 > 𝛽

for constant 𝛽 > 0
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Goldreich-Levin Theorem

Theorem 5:  Let 𝑓: 0,1 " → 0,1 , be a 𝑘-bit secure OWF.
Define 𝑔: 0,1 #" → 0,1 "I, as 𝑔 𝑥, 𝑟 = (𝑓 𝑥 , 𝑟)
Then, ℎ 𝑥, 𝑟 = ∑* 𝑥* F 𝑟* mod 2 is (𝑘 − 𝛼)-bit secure hard-core predicate 
for 𝑔 against balanced adversaries for 𝛼 = 2 log# 𝑛 + 3 log# 𝑘 + 𝑂 1 .

Proof:
l Goldreich-Levin theorem:

For ∀hard-core pred. attacker 𝐴 with Pr[𝐴 𝑔 𝑥, 𝑟 ) = ℎ 𝑥, 𝑟 > "/0
#

and running time 𝑇1,
∃OWF inverter 𝐴′ s.t. Pr[𝐴 𝑔 𝑥, 𝑟 ) = 𝑥, 𝑟 = Ω δ# and running time 𝑇1( = 𝑂 𝑛# log#

"
0

2
𝑇1

l Suppose that ℎ 𝑥, 𝑟 is not (𝑘 − 𝛼)-bit secure HC for balanced adversaries
l By Balanced-Adversary Lemma, ∃balanced HC attacker 𝐴 with running time 𝑇1
Pr[𝐴 𝑔 𝑥, 𝑟 ) = ℎ 𝑥, 𝑟 > "/0

#
for δ ≳ 𝑇1/2345

l By GL theorem, ∃OWF inverter 𝐴′ s.t. Pr[𝐴 𝑔 𝑥, 𝑟 ) = 𝑥, 𝑟 = Ω 𝑇1(/2345 à 𝑓 is not 𝑘-BS
27



WY21 からの考察

確率分布の近さを測るなら全変動距離よりも Hellinger 距離
（[WY21]の Distribution approximation の結果）

[Y21] Kenji Yasunaga. Replacing Probability Distributions in Security Games via 
Hellinger Distance. Information-Theoretic Cryptography (ITC) 2021



Security game for PKE

(pk, sk) ß Gen(r)pk

m0, m1

b ß {0,1}
c ß Enc(pk, mb; r’)

c

b’ 

Pr[ b’ = b ] ≈ 1/2
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Security game for PKE

(pk, sk) ß Gen(r)pk

m0, m1

b ß {0,1}
c ß Enc(pk, mb; r’)

c

b’ 

≈
≈

What closeness do we need 
to preserve the security level?

Pr[ b’ = b ] ≈ 1/2
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Total Variation Distance (a.k.a. Statistical Distance)

TV 𝑃, 𝑄 = '
#
∑_ |𝑃 𝑥 − 𝑄 𝑥 |

Security Analysis:

(1) Pr[ A wins the ideal game GQ ] = εQ

(2) TV(P, Q) ≤ δ

è Pr[ A wins the real game GP ] = εP ≤ εQ + δ

δ = 2-80 is sufficient for 80 bit security (εP ≈ 2-80)

Ideal Q Real P

TV 𝑃, 𝑄
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Results of [WY21] & [Y21]

In Hellinger distance, δ = 2-40 is sufficient for 80 bit security
l Both for search and decision games
l Bit Security framework of [WY21] (as well as [MW18])

Leftover Hash Lemma for Hellinger distance
l The same parameters as for TV [Y21]
l Can be shown by LHL for KL divergence [BBCM94] and relation b/w KL & HD

è Entropy loss of LHL can be reduced by half with HD-based analysis

≈TV
160 bit 

entropy loss

HD
80 bit 

entropy loss

80 bit security
[BBCM94] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Ueli M. Maurer:
Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1994
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Hellinger Distance

HD 𝑃, 𝑄 =
1
2
|
_

𝑃(𝑥) − 𝑄(𝑥)
#
= 1 −|

_

𝑃(𝑥) F 𝑄(𝑥)

(1,0)

(0,1)

O

𝑃(0), 𝑃(1)

𝑄(0), 𝑄(1)

2 \ HD(𝑃, 𝑄)

l 0 ≤ HD(𝑃, 𝑄) ≤ 1

l HD(𝑃, 𝑄)" ≤ TV(𝑃, 𝑄) ≤ 2 S HD(𝑃, 𝑄)

l 𝐷!/" 𝑃‖𝑄 ≈ HD(𝑃, 𝑄)" for 𝐷!/" 𝑃‖𝑄 ≤ !
"

l HD(𝑃, 𝑄)" ≤ !
"
KL(𝑃, 𝑄)

l Tensorization Property:
For product dist. 𝑃ℓ = 𝑃,⋯ , 𝑃 , 𝑄ℓ = (𝑄,⋯ ,𝑄),

HD 𝑃ℓ, 𝑄ℓ ≤ ℓ S HD 𝑃,𝑄
è TV 𝑃ℓ, 𝑄ℓ ≤ 2ℓ S HD 𝑃,𝑄

l Cf. TV 𝑃ℓ, 𝑄ℓ ≤ ℓ S TV(𝑃, 𝑄)
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Theorem holds for both search/decision games 
in the frameworks [MW18] [WY21]

Proofs crucially use Tensorization Property of HD

Theorem 6 (Security for search/decision game):
If 𝐺b has 𝑘-bit security and HD 𝑃, 𝑄 ≤ 2P!/#, 
then 𝐺J has (𝑘 − 𝑂 1 )-bit security.
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Proof Overview of Theorem 6 (for Decision Game)

l Suppose 𝐺J is not (𝑘 − α)-bit secure

l By Theorem 1, ∃A s.t. $
234 &

≲ 2!PQ where  adv 𝐴 ≈ HD(𝐴;J, 𝐴'J)#

l By Tensorization Property,  HD 𝐴cJ , 𝐴c
b ≤ 𝑇 F 2P!/#

l By Triangle Inequality, 
HD 𝐴;J, 𝐴'J ≤ HD 𝐴;J, 𝐴;

b + HD 𝐴;
b , 𝐴'

b + HD 𝐴'
b , 𝐴'J

≤ HD 𝐴;
b , 𝐴'

b + 2 𝑇 F 2P!

l Thus, HD 𝐴;
b , 𝐴'

b ≥ 𝑇 F 2P(!PQ) − 2 𝑇 F 2P! ≈ 𝑇 F 2P!

l A satisfies $
234 &

= $

]\ &6
7,&8

7 9 ≲ 2!, a contradiction  (Q.E.D.)
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Leftover Hash Lemma for Hellinger distance

Leftover Hash Lemma [BB85, ILL89] :
Universal hash family 𝑯 = 𝐻: {0,1}"→ {0,1}, with 
𝑯 = 2d gives a 𝑘, ε -strong extractor 
𝐸𝑥𝑡: {0,1}"×{0,1}d→ {0,1}, for 𝑘 − 𝑚 = 2 log '

%
− 1

Theorem 7:
Universal hash family gives a 𝑘, ε -strong Hellinger
extractor for 𝑘 − 𝑚 = 2 log '

%
− 1

TV 𝐸𝑥𝑡 𝑋, 𝑈: , 𝑈: , 𝑈;/: ≤ 𝜀 Entropy Loss

HD 𝐸𝑥𝑡 𝑋, 𝑈: , 𝑈: , 𝑈;/: ≤ 𝜀
36



まとめ・今後の展望



まとめ

操作的な意味をもつセキュリティ定量化の枠組み [WY21]

𝐺 が 𝑘-ビットセキュリティ ó

判定ゲームでは Rényi advantage を使うべき
確率分布の近さを測るには全変動距離ではなく Hellinger 距離

今後の展望

どの攻撃者も 𝐺に 99% の確率で
勝つには計算コスト 2!が必要

様々な安全性（情報理論的安全性，量子情報）への適用可能
内側・外側攻撃者を使った新しい帰着？（既存は内側だけ）
タイトな帰着è ビットセキュリティ損失なし帰着
資源（情報源・通信路）のビットセキュリティ？
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